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Abstract and Course Syllabus

Abstract

The aim of this course is to teach the basic principles and concepts of modern cryptography.
The focus of the course will be on cryptographic problems and their solutions, and will contain
a mix of both theoretical and applied material. We will present definitions of security and argue
why certain construction meet these definitions. However, these definitions and arguments will
be rather informal. (A rigorous treatment of the theory of cryptography will be given in course
89-856 next semester.) There is no one text book that covers all of the material in the course
(nor one that presents the material in the same way as we do). However, much of the material
can be found in the textbooks of [36] and [37] in the library.

Course Syllabus

1. (a) Introduction: what is modern cryptography (what problems does it attempt to solve
and how); the heuristic versus the rigorous approach; adversarial models and principles
of defining security.

(b) Historical ciphers and their cryptanalysis

2. Perfectly secret encryption: definitions, the one-time pad and its proof of security; proven
limitations, Shannon’s theorem.

3. (a) Pseudorandomness: definition, pseudorandom generators and functions.

(b) Private-key (symmetric) encryption schemes: Definition of security for eavesdrop-
ping adversary, stream ciphers (construction from pseudorandom generators).

4. Private-key encryption schemes:

(a) Block ciphers: CPA-secure encryption from pseudorandom permutations/functions.

(b) The Data Encryption Standard (DES).

5. Private-key encryption (continued):

(a) DES (continued): Attacks on reduced-round DES; double DES and triple DES.

(b) Modes of operation: how to encrypt many blocks.

6. Collision-resistant hash functions: definition, properties and constructions; the random
oracle model

7. Message authentication: definition, constructions, CBC-MAC, HMAC

8. (a) Combining encryption and authentication: how and how not to combine the two.
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(b) CCA-secure encryption: definition and construction.

(c) Key management: the problem, key distribution centers (KDCs), key exchange pro-
tocols

9. Public-key (asymmetric) cryptography: introduction and motivation, public-key prob-
lems and mathematical background (Discrete Log, Computational and Decisional Diffie-
Hellman, Factoring, RSA), Diffie-Hellman key agreement

10. Public-key (asymmetric) encryption schemes: the model and definitions, the El-Gamal
encryption scheme, the RSA trapdoor one-way permutations, RSA in practice

11. Attacks on RSA: common modulus, broadcast, timing attacks

12. Digital signatures and applications: definitions and constructions (in the random oracle
model), certificates, certificate authorities and public-key infrastructures.

13. Secure protocols: SSL, secret sharing

Much of the material in the course (but far from all of it) can be found in [36] and [37]. Other
texts of relevance are [17] and [28].

A note regarding references: Some references are presented throughout the lecture notes.
These reference are not supposed to be citations in the classic sense, but rather are pointers to
further reading that may be of interest to those who wish to understand a topic in greater depth.
As such, the references are not complete (in fact, there are many glaring omissions).
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Lecture 1

Introduction and Historical Ciphers

1.1 Introduction

Classic cryptography dealt exclusively with the problem of secure communication. Modern cryp-
tography is a much broader field that deals with all adversarial threats facing parties who wish
to carry some task in a network. More specifically, the aim of cryptography is to provide secure
solutions to a set of parties who wish to carry out a distributed task and either do not trust each
other or fear an external adversarial threat.

The heuristic versus rigorous approach to security. The heuristic approach follows a
build/break/fix cycle. That is, a cryptographic solution is proposed, its weaknesses are then discov-
ered and the solution is fixed to remove these weaknesses. At this point, new weaknesses are found
and again fixed. An inherent problem with this approach is that it is unclear when the cycle has
concluded. That is, at the point at which no new weaknesses are found, it is unclear whether this is
(a) because the solution is really secure or (b) because we just haven’t found any weaknesses yet.
We note that there have been a number of examples of protocols that were well-accepted as secure,
until weaknesses were found years later (the Needham-Schroeder protocol is a classic example). On
the other hand, it is widely believed that the problem of constructing efficient and secure block
ciphers (using the heuristic approach) is well understood.1 In contrast to the heuristic approach,
the rigorous approach (or the approach of “provable security”) provides mathematical proofs of the
security of cryptographic constructions. Typically, these proofs are by reduction to basic problems
that are assumed to be hard. (This breakdown in the rigorous nature of the proof is inevitable until
major breakthroughs are made in the theory of computer science. In particular, the existence of
secure solutions for most cryptographic tasks implies, among other things, that P 6= NP.) An im-
portant focus of this approach is (a) reducing the assumptions to their minimum, and (b) proving
the security of even very complex constructions by reducing them to a simple assumption regarding
the feasibility of solving a certain problem in polynomial-time.

I am a strong proponent of the rigorous approach to cryptography and security. However,
together with this, I believe that some heuristic solutions are necessary in practice (given our current
state of knowledge regarding rigorous constructions). This belief is reflected in this course, where

* Lecture notes for an undergraduate course in cryptography. Yehuda Lindell, Bar-Ilan University, Israel, 2005.
1My personal position is that heuristic constructions of low-level primitives make more sense than for more complex

protocols. Indeed, even theoretical cryptography relies on “heuristic” constructions of primitives (since there is no
proof that factoring is hard, this belief is arguably no different to the belief that DES is a pseudorandom permutation).
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6 LECTURE 1. INTRODUCTION AND HISTORICAL CIPHERS

practical and heuristic constructions are presented together with theory.2 I stress that it is my strong
belief that the use of heuristics should be minimalized as much as possible. Furthermore, although
heuristics may sometimes be unavoidable with respect to actual constructions, it is imperative that
rigorous definitions of both the adversarial model and what it means that the construction is secure
are always provided.

Defining security. In order to define what it means for a construction to be “secure”, there are
two distinct issues that must be explicitly considered. The first is the power of the adversary and the
second the break. The power of the adversary relates to assumptions regarding its computational
power and what actions it is allowed to take. For example, do we assume that the adversary
can merely eavesdrop on encrypted messages, or do we assume that it can also actively request
encryptions (or even decryptions). The break relates to what the adversary must do in order to
“succeed”. For example, if encryption is being considered, then adversarial success could be defined
by the ability of obtaining the plaintext of an encrypted message (this would be a very weak notion
of security, but this is not the place to discuss how “good” such a definition would be). Once the
adversarial power and break have been defined, a construction is said to be secure if no adversary of
the specified power can succeed in breaking the construction (beyond a specified small probability).

An important issue to note in relation to the above is that defining security essentially means
providing a mathematical definition. However, if the adversarial power that is defined is too weak
(and in practice adversaries have more power), then “real security” is not obtained, even if a
“mathematically secure” construction is used. Likewise, if the break is not carefully defined, then
the mathematical definition may not provide us with the level of security that is needed in the real
world. In short, a definition of security must accurately model the real world security needs in
order for it to deliver on its mathematical promise of security.

Parenthetical remark. Turing faced a similar problem in [38]. Specifically, he was concerned
with the question of whether or not the mathematical definition of “computable numbers” indeed
includes all numbers that would be considered computable. A quote from [38, Section 9] follows:3

No attempt has yet been made to show that the“computable” numbers include all num-
bers which would naturally be regarded as computable. All arguments which can be given
are bound to be, fundamentally, appeals to intuition, and for this reason rather unsatis-
factory mathematically. The real question at issue is “What are the possible processes
which can be carried out in computing a number?”

The arguments which I shall use are of three kinds.

(a) A direct appeal to intuition.

(b) A proof of the equivalence of two definitions (in case the new definition has a greater
intuitive appeal).

(c) Giving examples of large classes of numbers which are computable.

Once it is granted that computable numbers are all “computable” several other proposi-
tions of the same character follow. In particular, it follows that, if there is a general

2Given that this is an undergraduate course, more attention is given to constructions than to the theory underlying
theoretical cryptography. This does not reflect my position regarding the relative importance of theory. In fact, the
opposite is true. Rather, I focus on theory in my graduate course on the “foundations of cryptography”.

3We thank Hugo Krawczyk for showing us this quote.



1.2. HISTORICAL CIPHERS AND THEIR CRYPTANALYSIS 7

process for determining whether a formula of the Hilbert function calculus is provable,
then the determination can be carried out by a machine.

It seems that this issue is inevitable when one attempts to present mathematical models of real-life
processes.

1.2 Historical Ciphers and Their Cryptanalysis

This section focuses on ciphers that were widely used in the past, and how they can be broken.
Although this is the focus, we also present some central principles of cryptography which can be
learned from the weaknesses of these schemes. In this section, plaintext characters are written in
lower case and ciphertext characters are written in UPPER CASE.

Caesar’s cipher and Kerckhoff’s principle [24]. Encryption is carried out in this cipher by
rotating the letters of the alphabet by 3. That is: a is encrypted to D, b to E and so on. For
example:

attack today → DWWDF WRGDB

The secrecy of this cipher is in the algorithm only. Once the method is discovered (or leaked), it is
trivial to decipher. This weakness brings us to one of the central principles of modern cryptography,
known as Kerckhoff’s principle:

A cryptosystem should be secure even if everything about the system, except the key, is
public knowledge.4

This principle stands in contrast to the security by obscurity school of thought, which is unfortu-
nately still very popular in practice. Some of the advantages of “open design” are as follows:

1. Published designs undergo public scrutiny and are therefore likely to be stronger.

2. It is better that security flaws are revealed (by “ethical hackers”) and made public, than
having these flaws only known to malicious parties.

3. If the security of the system relies on the secrecy of the algorithm, then reverse engineering
of code poses a serious threat to security. (This is in contrast to a key which should never be
hardwired into the code, and so is not vulnerable to reverse engineering.)

4. Public design enables the establishment of standards.

We now return to the topic of historical ciphers.

The shift cipher and the sufficient key space principle. Caesar’s cipher suffered from the
fact that encryption and decryption are always the same, and there is no secret key. In the shift
cipher, the key K is a random number between 0 and 25. Encryption takes place by shifting each
letter by K, and rotating when reaching the letter z. Caesar’s cipher is equivalent to the shift
cipher when K = 3. The security of this cipher is very weak, since there are only 26 possible

4In fact, this is just one of six principles laid down by Kerckhoff; the others are also interesting and some of
them just as central. See http://encyclopedia.thefreedictionary.com/Kerckhoff’s%20principle for a short
dictionary entry on the topic.
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keys. Therefore, all possible keys can be tested, and the key that decrypt the ciphertext into a
plaintext that “makes sense” is most likely the correct one. This brings us to a trivial, yet important
principle: Any secure scheme must have a key space that is not vulnerable to exhaustive search. In
today’s age, an exhaustive search may use very powerful computers, or many thousands of PC’s
that are distributed around the world.

Question: it has been decided to use a shift cipher in order to send a message whose
meaning is whether or not to attack on the following day. The plaintext y (for yes) will
be used to represent the message “attack” and the plaintext n (for no) will be used to
represent the message “don’t attack”. Is this use of the shift cipher secure? Why or
why not?

Mono-alphabetic substitution. In order to increase the key space, each plaintext character is
mapped to a different ciphertext character. The mapping is 1–1 in order to enable decryption (i.e.,
the mapping is a permutation). The key is therefore a permutation of the alphabet (the size of the
key space is therefore 26!). For example, the key

a b c d e f g h i j k l m n o p q r s t ...
X E U A D N B K S M R O C Q F S Y H W G ...

results in the following encryption:

attack today → XGGZR GFAXL

A brute force attack on the key no longer works for this cipher – even by computer. Nevertheless,
it is easy to break the scheme by using the statistical patterns of the language. The two properties
that allow the attack are (a) in this cipher, the mapping of each letter is fixed, and (b) the
probability distribution of text in English (or any other language) is known. The attack works by
building the probability distribution of the ciphertext (i.e., simply counting how many times each
letter appears), and then comparing it to the probability distribution of English. The letter with
the highest frequency in the ciphertext is likely mapped from e, and so on. Combining this with
general knowledge that we have of the English language, it is easy to decipher. See the probability
distribution of English letters frequencies in Figure 1.1. This simple attack works remarkably well,
even on relatively short texts.

Problems: Decipher the following two ciphertexts:

• BPMZO XS AFZHAWFC FX OSSK: "XPH ZFOT SY XPH PSEAH MAC’X MC. APH’A FX PHK
SYYMBH KECCMCL PHK BSWNFCT. M’ZZ LHX XPH WFC SY XPH PSEAH."

• FXHFMK WT OLXTDFBO LG VTLVXT HNL EYKFIDTT HYON MLA. ONTM NFUT F DYINO
OL ONTYD LHB DYEYPAXLAK LVYBYLBK.

The Vigenère (poly-alphabetic substitution) cipher. The problem with the substitution
cipher above is that each plaintext character is always mapped to the same ciphertext character. In
this cipher, different instances of the same letter are mapped to different characters. The method:

1. Choose a period t and then choose t random permutations π1, . . . , πt over the alphabet.

2. Characters in positions i, t + i, 2t + i, ... are mapped using permutation πi (for i = 1, . . . , t).
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The statistical attack described above no longer works because the different permutations smooth
out the probability distribution. The key here contains t (chosen at random within some determined
range) and the random permutations π1, . . . , πt. We describe a three step attack:

1. Determine the period t

2. Break the ciphertext into t separate pieces

3. Solve each piece using the simple statistical attack above (note this is more difficult than
before because we need to combine all guesses together in order to utilize our knowledge of
the language)

The question here is how to determine t. We now describe Kasiski’s method for solving this
problem. First, we identify repeated patterns of length 2 or 3 in the ciphertext. These are likely
to be due to certain bigrams or trigrams that appear very often in the English language. Now, the
distance between these appearances should be a multiple of the period length. Thus, taking the
greatest common divisor of all distances between the repeated sequences should be a good guess
for the length of t.

Other ways of determining t are as follows:

1. Brute force search: for k = 1, 2, . . . build the probability distributions for the letters i, k +
i, 2k + i and so on (for each i). If t = k, then these distributions should look like English.

2. Measure smoothness: Denote by pi the frequency of the ith letter in the ciphertext. Then,
compute

∑26
i=1(pi − 1

26)2; this value is the statistical distance of the probability distribution
from the uniform distribution. Now, the larger the value t, the closer the distribution should
be to the uniform distribution. (It is possible to build a table of expected statistical distances
for different values of t.)

Code-book cipher. In this cipher, an unrelated text is used as a key. That is, a book and
a page number is chosen, and encryption works by “adding” the two texts together. In order
to break this, we use the fact that English language is not uniformly distributed. So, we start by
subtracting popular trigrams like the or ing from each point in the text. Sometimes, we will obtain
a combination that makes sense and we will be able to complete the word. Obtaining enough words
may enable us to guess the text that is used.
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Lecture 2

Information Theoretic Security

In general, we consider an encryption scheme to be secure if the amount of time (computing
resources) that it takes to “break” it is well beyond the capability of any entity given today’s
technology and the technology of the foreseeable future. In this lecture, we consider the notion
of perfect or information-theoretic security of schemes that cannot be broken even if an adversary
has infinite computational power and resources. Unfortunately, there are proven limitations on the
constructions of perfectly secure encryption and we will prove these limitations as well.

2.1 Preliminaries

Brief reminders from probability:

1. X and Y are independent if

Pr[X = x & Y = y] = Pr[X = x] · Pr[Y = y]

2. The conditional probability of X given Y is

Pr[X = x | Y = y] =
Pr[X = x & Y = y]

Pr[Y = y]
.

Restating the above, X and Y are independent if and only if Pr[X = x | Y = y] = Pr[X = x]
for all x and y.

3. Bayes’ theorem states that if Pr[Y = y] > 0, then

Pr[X = x | Y = y] =
Pr[X = x] · Pr[Y = y | X = x]

Pr[Y = y]
.

Perfectly-secret encryption. Before defining the notion of perfectly-secret encryption, we
present some notation:

1. Let P denote the set of all possible plaintexts (the message space).

2. Let K denote the set of all possible keys (the key space).

* Lecture notes for an undergraduate course in cryptography. Yehuda Lindell, Bar-Ilan University, Israel, 2005.
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12 LECTURE 2. INFORMATION THEORETIC SECURITY

3. Let C denote the set of all possible ciphertexts.

We stress that the set P is defined independently of the encryption scheme and equals the set of
messages that can be obtained with non-zero probability. In contrast, the set K depends only on
the encryption scheme (and not P), and the set C may in principle depend both on the encryption
scheme and the set P. As for P, the sets K and C are minimal in that they only include values
that can be obtained with non-zero probability.

An encryption scheme (E, D) is a pair of functions such that E : K × P → C, D : K × C → P,
and for every m ∈ P and every k ∈ K it holds that D(k, (E(k, m)) = m (i.e., the decryption process
always succeeds). We typically write Ek(·) and Dk(·). We also note that E may be probabilistic
(in which case it is a function from K×P ×R where R is a uniformly chosen string of a specified
length). We assume that the distributions over the sets P and K are independent (i.e., keys are
chosen independently of the message). This is reasonable because the key is typically fixed before
the message is known.

We write Pr[K = k] to mean the probability that the specific key being used is k; likewise for
Pr[C = c] and Pr[P = m]. For example, if the message space is {a, b, c} and the message a is
sent with probability 1/4, then we write Pr[P = a] = 1/4. We note that the probability space for
Pr[C = c] includes the random choice of the key k, the distribution over the message space P and
any random coin tosses (possibly) made by E during encryption.

Denote the set of ciphertexts under a given key k by C(k) = {Ek(x) | x ∈ P}. We therefore
have the following fact (which relies on the independence of P and K):

Pr[C = c] =
∑

k∈K s.t. c∈C(k)

Pr[K = k] · Pr[P = Dk(c)] (2.1)

We can also compute the probability that C = c given some plaintext m (i.e., the probability that
the encryption of m will equal c):

Pr[C = c | P = m] =
∑

k∈K s.t. m=Dk(c)

Pr[K = k] (2.2)

2.2 Perfect Secrecy

We are now ready to define the notion of perfect secrecy. Intuitively, this is formulated by saying
that the probability distribution of the plaintext given the ciphertext is that same as its a priori
distribution. That is,

Definition 2.1 (perfect secrecy): An encryption scheme has perfect secrecy if for all plaintexts
m ∈ P and all ciphertexts c ∈ C:

Pr[P = m | C = c] = Pr[P = m]

An equivalent formulation of this definition is as follows.

Lemma 2.2 An encryption scheme has perfect secrecy if and only if for all m ∈ P and c ∈ C

Pr[C = c | P = m] = Pr[C = c]
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Proof: This lemma follows from Bayes’ theorem. That is, assume that

Pr[C = c | P = m] = Pr[C = c]

Then, multiply both sides of the equation by the value Pr[P = m]/Pr[C = c] and you obtain

Pr[C = c | P = m] · Pr[P = m]
Pr[C = c]

= Pr[P = m]

Then, by Bayes’ theorem, it follows that the left-hand-side equals Pr[P = m | C = c]. Thus,
Pr[P = m | C = c] = Pr[P = m] and the scheme has perfect secrecy.

In the other direction, assume that the scheme has perfect secrecy and so Pr[P = m | C = c] =
Pr[P = m]. Then, multiplying both sides by Pr[C = c]/Pr[P = m] we obtain

Pr[P = m | C = c] · Pr[C = c]
Pr[P = m]

= Pr[C = c]

By Bayes’ theorem, the left-hand side equals Pr[C = c | P = m], completing the lemma.

Note that in the above proof, we use the fact that Pr[C = c] > 0 and the fact that Pr[P = m] > 0.
Given the above, we obtain a useful property of perfect secrecy:

Lemma 2.3 For any perfectly-secret encryption scheme, it holds that for all m,m′ ∈ P and all
c ∈ C:

Pr[C = c | P = m] = Pr[C = c | P = m′]

Proof: Applying Lemma 2.2 we obtain that Pr[C = c | P = m] = Pr[C = c] and likewise
Pr[C = c | P = m′] = Pr[C = c]. Thus, they both equal Pr[C = c] and so are equal to each other.

2.3 The One-Time Pad (Vernam’s Cipher)

In 1917, Vernam patented a cipher that obtains perfect secrecy. Let a ⊕ b denote the bitwise
exclusive-or of a and b (i.e., if a = a1 · · · an and b = b1 · · · bn, then a ⊕ b = a1 ⊕ b1 · · · an ⊕ bn).
In Vernam’s cipher, a key K is only allowed to be used once (thus, it is called a one-time pad).
In this cipher, we set K to be the uniform distribution over {0, 1}n, and we set P = {0, 1}n and
C = {0, 1}n. Then,

c = Ek(m) = k ⊕m and m = Dk(c) = k ⊕ c

Intuitively, the one-time pad is perfectly secret because for every c and every m, there exists a key
for which c = Ek(m). We prove this intuition formally in the next theorem.

Proposition 2.4 The one-time pad is perfectly secret.

Proof: We prove this using Eq. (2.2) and Lemma 2.3. Let m,m′ ∈ {0, 1}n be any two plaintexts
and let c ∈ {0, 1}n be a ciphertext. Then, by Eq. (2.2) it follows that

Pr[C = c | P = m] =
∑

k∈K s.t. m=k⊕c

Pr[K = k] =
1
2n
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where the second equality follows from the fact that there exists exactly one key k for which
m = k ⊕ c, and the keys are chosen at uniform from the set {0, 1}n. The above calculation is
independent of the distribution P, and therefore it also holds that

Pr[C = c | P = m′] =
∑

k∈K s.t. m′=k⊕c

Pr[K = k] =
1
2n

Thus, Pr[C = c | P = m] = Pr[C = c | P = m′], as required.

We therefore have that perfect secrecy is indeed attainable. However, the one-time pad is severely
limited in that each key can only be used once.

2.4 Limitations of Perfect Secrecy

Unfortunately, the above-described limitation of the one-time pad is inherent. That is, we now prove
that in order to obtain perfect secrecy, the key-space must be at least as large as the message-space.
Before stating the theorem, we recall that we assume that the message-space P is such that for
every m ∈ P, Pr[P = m] > 0. Otherwise, one should redefine P without m and apply the theorem
to this new P. We now state the theorem.

Theorem 2.5 Assume that there exists a perfectly secret encryption scheme for sets K, P and C.
Then, |K| ≥ |P|.

Proof: Let c be a ciphertext and consider the set D(c) = {m | ∃k s.t. m = Dk(c)}. Then, by
perfect secrecy it must hold that D(c) = P; otherwise, we obtain that for some message m it holds
that Pr[P = m | C = c] = 0, whereas Pr[P = m] > 0. Since D(c) = P it follows that for every
m, there exists at least one key k such that Ek(m) = c (otherwise, m /∈ D(c)). Now, let m and
m′ be two different plaintexts, let k be such that Ek(m) = c, and let k′ be such that Ek′(m′) = c
(we have just proven the existence of k and k′). Then, it must hold that k 6= k′; otherwise correct
decryption will not hold. We conclude that for every plaintext m there is at least one key k that
is unique to m such that Ek(m) = c. Thus, the number of keys is at least as great as the number
of messages m. That is, |K| ≥ |P|.
We remark that the above proof holds also for probabilistic encryption schemes.

One-time-pad security at a lower price. Very often, encryption schemes are developed by
companies who then claim to have achieved the security level of a one-time pad, at a “lower price”
(e.g., with small keys, with public-keys etc.). The above proof demonstrates that such claims cannot
be true; the person claiming them either knows little of cryptography or is blatantly lying.

2.5 Shannon’s Theorem

Shannon [34] provided a characterization of perfectly secure encryption schemes. As above, we
assume that the sets P, C and K are such that all elements are obtained with non-zero probability
(and K is independent of P).

Theorem 2.6 (Shannon’s theorem): Let (E,D) be an encryption scheme over (P, C,K) where
|P| = |K| = |C|. Then, the encryption scheme provides perfect secrecy if and only if:

1. Every key is chosen with equal probability 1/|K|,
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2. For every m ∈ P and every c ∈ C, there exists a unique key k ∈ K such that Ek(m) = c.

Proof: We first prove that if an encryption scheme is perfectly secret over (P,K, C) such that
|P| = |K| = |C|, then items (1) and (2) hold. We have already seen that for every m and c,
there exists at least one key k ∈ K such that Ek(m) = c. For a fixed m, consider now the
set {Ek(m) | k ∈ K}. By the above, |{Ek(m) | k ∈ K}| ≥ |C| (because by fixing m first we
obtain that for every c there exists a k such that Ek(m) = c). In addition, by simple counting,
|{Ek(m) | k ∈ K}| ≤ |K|. Now, since |K| = |C| it follows that |{Ek(m) | k ∈ K}| = |K|. This implies
that for every m and c, there do not exist any two keys k1 and k2 such that Ek1(m) = Ek2(m) = c.
That is, for every m and c, there exists at most one key k ∈ K such that Ek(m) = c. Combining
the above, we obtain item (2).

We proceed to show that for every k ∈ K, Pr[K = k] = 1/|K|. Let n = |K| and P =
{m1, . . . , mn} (recall, |P| = |K| = n), and fix a ciphertext c. Then, we can label the keys k1, . . . , kn

such that for every i (1 ≤ i ≤ n) it holds that Eki(mi) = c. (This labelling can be carried out
because by fixing c, we obtain that for every m there exists a single k such that Ek(m) = c; for mi

we label the key by ki. We note that this labelling covers all of the keys in k. This holds because for
i 6= j, the key ki such that Eki(mi) = c is different to the key kj such that Ekj (mj) = c; otherwise,
unique decryption will not hold.) Then, by perfect secrecy we have:

Pr[P = mi] = Pr[P = mi | C = c]

=
Pr[C = c | P = mi] · Pr[P = mi]

Pr[C = c]

=
Pr[K = ki] · Pr[P = mi]

Pr[C = c]

where the second equality is by Bayes’ theorem and the third equality holds by the labelling above.
From the above, it follows that for every i,

Pr[K = ki] = Pr[C = c]

Therefore, for every i and j, Pr[K = ki] = Pr[K = kj ] and so all keys are chosen with the same
probability. We conclude that Pr[K = ki] = 1/|K|, as required.

The other direction of the proof is left for an exercise.
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Lecture 3

Pseudorandomness and Private-Key
Encryption Schemes

In this lecture we introduce the notion of computational indistinguishability and pseudorandomness
(generators and functions). In addition, we define secure symmetric (private-key) encryption, and
present stream ciphers, block ciphers and modes of operation. In general, we use a “concrete-
security analysis” approach (rather than an asymptotic one); however, we use a simplified and
rather informal presentation. Our aim in this approach is to simplify the technical aspects of the
definitions, while also raising awareness of the need in practice to have a concrete analysis in order
that specific parameters may be chosen. Once again, a rigorous treatment of this material will be
given in Semester II (course 89-856).

3.1 Pseudorandomness

In this section, we present the notion of indistinguishability and pseudorandomness. Initially, it
may not be clear why these seemingly very abstract concepts are of relevance. However, we will
soon show how to use them to construct secure encryption schemes that do not suffer from the
inherent limitations on key-size that hold for perfectly-secret encryption schemes.

Conventions. Let X be a probability distribution and A an algorithm. Then, when we write
A(X) we mean the output of A when given a random output drawn according to the distribution
X. If X appears twice or more in the same equation, then each appearance should be interpreted
as a single instance (i.e., all values are the same). We denote by Un the uniform distribution over
{0, 1}n.

Computational indistinguishability and pseudorandomness. Loosely speaking, two en-
sembles are (t, ε)-indistinguishable if for every algorithm (Turing machine) that runs for at most t
steps, the probability of distinguishing between them (via a single sample) is at most ε.

Definition 3.1 ((t, ε)-indistinguishability): Let ε ∈ [0, 1] be a real value, let t ∈ N, and let X and

Y be probability distributions. We say that the X and Y are (t, ε)-indistinguishable, denoted X
t,ε≡ Y ,

* Lecture notes for an undergraduate course in cryptography. Yehuda Lindell, Bar-Ilan University, Israel, 2005.
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if for every distinguisher D running for at most t steps,

|Pr[D(X) = 1]− Pr[D(Y ) = 1]| < ε

A probability distribution is pseudorandom if it is indistinguishable from the uniform distribution.

Definition 3.2 ((t, ε)-pseudorandomness): Let Xn be a probability distribution ranging over strings
of length n. We say that Xn is (t, ε)-pseudorandom if it is (t, ε)-indistinguishable from Un.

Pseudorandom generators. A pseudorandom generator (PRG) takes short strings and “stretches”
them so that the result is pseudorandom. Intuitively, such an algorithm enables us to use less ran-
domness. Thus, for example, we could obtain the effect of a one-time pad while using a key that is
shorter than the message.

Definition 3.3 ((t, ε)-pseudorandom generator): Let Gn,` : {0, 1}n → {0, 1}` be a polynomial-time

algorithm. We say that Gn,` is a (t, ε)-pseudorandom generator if ` > n and Gn,`(Un)
t,ε≡ U`.

A pseudorandom generator is of interest (in the context of cryptography) if it can be efficiently
computed (in time significantly less than t). The input r to a generator is called the seed.

3.2 Symmetric (Private-Key) Encryption

3.2.1 Defining Security

As we discussed in the first lecture, defining secure encryption involves specifying two components:
the adversary and the break. Intuitively, an encryption scheme is secure if a ciphertext reveals no
information about the plaintext. We present a formalization based upon indistinguishability. That
is, we say that the encryption scheme is secure if for every two plaintexts x and y, it is hard to
distinguish the case that c = E(x) and c = E(y).1 The ciphertext c is called the challenge ciphertext.
Regarding the adversary’s power, we consider three cases:

1. Eavesdropping attack: In this attack, the adversary is just given the ciphertext and must
attempt to distinguish.

2. Chosen-plaintext attack (CPA): In this attack, the adversary is allowed to obtain encryptions
of any messages that it wishes. This models the fact that sometimes it is possible to influence
the messages that are encrypted. By giving the adversary full power, we model this in the
most general way.

3. Chosen-ciphertext attack (CCA): In this attack, the adversary is even allowed to obtain de-
cryptions of any ciphertext that it wishes (except for the challenge ciphertext). This is a very
strong attack. However, it models information that may be obtained about the plaintext of
ciphertexts. Such information may practically be obtained, for example, by querying a server
with ciphertexts that should be sent as part of the protocol. The response of the server may
reveal information about the encrypted message. (Most simply, the server may just reply
with whether or not the ciphertext was valid. This information was actually used in real
attacks.)

1We note that this is equivalent to a definition that states that the ciphertext reveals no partial information
about the plaintext. Namely, this definition states that for every function g (representing information to be learned
about the plaintext), the probability of computing g(x) from E(x) is comparable (i.e., within ε) of the probability of
computing g(x) even without receiving E(x).
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The syntax. An encryption scheme is a tuple of algorithms (K,E, D) such that K is a prob-
abilistic algorithm that generates keys, E is the encryption algorithm and D is the decryption
algorithm. For now, we will assume that K just uniformly chooses a key from some set, and so we
will sometimes refer to K as a set (rather than as an algorithm). We require that for every k ∈ K
and every x it holds that Dk(Ek(x)) = x.

The eavesdropping indistinguishability game Expteav. The adversary A outputs a pair of
messages m0,m1. Next, a random key is chosen k ← K and a random bit b ∈R {0, 1}. The
adversary A is then given c = Ek(mb) and finally outputs a bit b′. We say that A succeeded if
b′ = b and in such a case we write Expteav(A) = 1.

Definition 3.4 An encryption scheme E is (t, ε)-indistinguishable for an eavesdropper if for every
adversary A that runs for at most t steps,

Pr[Expteav(A) = 1] <
1
2

+ ε

Notice that this means that the only advantage A has over a random guess is ε. If ε is sufficiently
small, this is “ideal”. We stress that typically t will be taken so that it takes the most powerful
computer (or network of computers) today many hundreds of years to reach this number of steps.
On the flip side, ε is taken to be a number so small that it is more likely that all computers in the
world crash than this actually yielding an advantage. For example, ε may be taken to be 2−80.

Note also that Definition 3.4 is a natural relaxation of perfect secrecy. Namely, consider the
setting of perfect secrecy and define P = {m0,m1} with Pr[P = m0] = Pr[P = m1] = 1

2 . Then,
perfect secrecy dictates that for every c,

Pr[P = m0 | C = c] = Pr[P = m0] =
1
2

= Pr[P = m1] = Pr[P = m1 | C = c]

Thus, given a ciphertext c, the probability that P = m0 equals the probability that P = m1.
Stated differently, given c, the probability that any adversary will correctly guess b in the above
game equals 1/2 exactly. Now, Definition 3.4 says exactly the same thing, except that:

1. The adversary is limited to running t steps, and

2. The adversary is “allowed” a small advantage of ε.

Thus, there are really two relaxations in this definition (and they are both essential).

3.2.2 Constructing Secure Encryption Schemes

We show how to construct an encryption scheme that is indistinguishable for an eavesdropping
adversary.

A stream cipher. We first show how to use a pseudorandom generator to obtain a secure en-
cryption scheme, as long as only a single message is encrypted (i.e., as specified in the eavesdropping
game above). Let Gn,` be a pseudorandom generator. The construction is as follows:

• Key generation: choose a random k ∈R {0, 1}n
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• Encryption of m ∈ {0, 1}`: c = Ek(m) = Gn,`(k)⊕m

• Decryption of c ∈ {0, 1}`: m = Dk(c) = Gn,`(k)⊕ c

In this context, Gn,` is called a stream cipher. We now claim that this scheme is secure for an
eavesdropping adversary. The intuition for proving this claim is due to the fact that a pseudoran-
dom generator outputs a string that is “essentially” the same as a uniformly distributed string.
Therefore, the security should follow from the fact that when a uniformly distributed string is used,
perfect security is obtained. The actual proof is by reduction.

Theorem 3.5 If Gn,` is a (t, ε)-pseudorandom generator, then the encryption scheme (K,E, D) is
(t′, ε)-indistinguishable for an eavesdropper, where t′ = t−O(`).

Proof: We prove the theorem by reduction. That is, we show that if an adversary A that runs for
t′ steps succeeds in the eavesdropping game with probability greater than or equal to 1

2 + ε, then
we can construct a distinguisher D that runs for t steps and distinguishes Gn,`(Un) from U` with
advantage at least ε.

The machine D receives a string R (that is either chosen according to Gn,`(Un) or U`). D
then invokes A, obtains m0,m1, chooses b ∈R {0, 1} and hands A the value c = R ⊕ mb. The
distinguisher D then outputs 1 if and only if A outputs b.

We begin by computing D’s running-time. Notice that D just invokes A, reads m0,m1 and
computes mb⊕R. Therefore, D’s running-time equals A’s running-time plus O(`) additional steps.
We now proceed to analyze D’s probability of successfully distinguishing a random string from a
pseudorandom one. First note that if R is uniformly chosen, then the probability that A outputs b
equals 1/2 exactly. On the other hand, if R is chosen according to Gn,`, then D outputs 1 with
exactly the probability that A succeeds. That is,

Pr[D(Gn,`) = 1]− Pr[D(U`) = 1] = Pr[Expteav(A) = 1]− 1
2
≥ ε

We conclude that if A runs in time t′ = t − O(`) and succeeds with probability at least 1/2 + ε,
then D runs in time t and distinguishes with probability at least ε. Thus, if the generator is
(t, ε)-pseudorandom, it follows that (K, E,D) is (t−O(`), ε)-indistinguishable for an eavesdropper.

Notice that we have now shown that the lower bounds on information-theoretic security can be
“broken”, assuming the existence of pseudorandom generators.

Stream ciphers in practice. We note that in practice, stream ciphers are extremely fast and
are therefore widely used. However, they are also less well-understood than block ciphers (see the
next lecture), and thus are more often broken. We will not present practical constructions of stream
ciphers in this course.



Lecture 4

Private-Key Encryption Schemes and
Block Ciphers

The main problem with stream ciphers is that each key can only be used once (or else, some
synchronization mechanism is needed to know which point in the stream is being currently used).
Block ciphers are a different type of construction and are very widely used. Essentially, a block
cipher is a pseudorandom permutation. We will show how to encrypt with a block cipher, and will
concentrate here on both theory and practice. In this lecture, we will first show how to construct
CPA-secure schemes from pseudorandom functions (or permutations). We will then proceed to
show how block ciphers are constructed and used in practice.

4.1 Pseudorandom Functions and Permutations

A pseudorandom function is a function that cannot be distinguished from a truly random function.
Note that the length of the description of an arbitrary function from {0, 1}n to {0, 1}` is 2n` bits.
Thus, the set of all functions of these parameters is of size 22n`; a random function is a function
that is chosen according to the uniform distribution from this set. Equivalently, a random function
can be chosen by choosing the image of every value uniformly at random (and independently of all
other values).

In the following definition, we use the notion of an oracle machine (or algorithm). Such an
algorithm is given access to an oracle O that it can then query with any value q, upon which it
receives back the result O(q). Furthermore, this computation is counted as a single step for the
algorithm.

Definition 4.1 ((t, ε)-pseudorandom function): Let Fn,` be a distribution over functions that map
n-bit long strings to `-bit long strings. Let Hn,` be the uniform distribution over all functions map-
ping n-bit long strings to `-bit long strings. Then, the distribution Fn,` is called (t, ε)-pseudorandom
if for every probabilistic oracle machine D running for at most t steps,

∣∣∣Pr[DFn,` = 1]− Pr[DHn,` = 1]
∣∣∣ < ε

where the probabilities are taken over the coin-tosses of D, as well as the choice of the functions.1

* Lecture notes for an undergraduate course in cryptography. Yehuda Lindell, Bar-Ilan University, Israel, 2005.
1We stress that the order of steps in this “game” is as follows. First, a specific function is chosen uniformly from

the distribution (either Fn,` or Hn,`). Then, D is given oracle access to the chosen (and now fixed) function. Finally,
D outputs a bit, in which it attempts to guess whether the function was chosen from Fn,` or Hn,`.

21
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As with pseudorandom generators, pseudorandom functions are of interest if they can be efficiently
computed. We will therefore consider distributions of functions for which a function is specified
via a “short” random key of length k. That is, the functions we consider are defined by Fn,` :
{0, 1}k × {0, 1}n → {0, 1}` where the key is chosen randomly from {0, 1}k. (Notice that for n = k,
for example, the description of such a pseudorandom function is only k bits, whereas the description
of a truly random function is of length 2n` = 2k`.)

Convention. From now on, we will consider pseudorandom functions for which n = ` = k. That
is, F will be a family of 2n functions; each function is specified by choosing a random n-bit key
k ∈R {0, 1}n. Then, we denote by Fk(·) the deterministic function that maps n-bit strings to n-bit
strings, where the key k is fixed.

4.2 Private-Key Encryption Schemes from Pseudorandom Func-
tions

We begin by defining the CPA (chosen-plaintext attack) indistinguishability games.

The CPA indistinguishability game Exptcpa. A random key is chosen k ← K and the adver-
sary A is then given oracle access to the encryption algorithm Ek(·). At some stage, the algorithm
A outputs a pair of message m0,m1 of the same length. A bit b ∈R {0, 1} is then randomly chosen
and A is given c = Ek(mb) (this value is called the challenge ciphertext). Adversary A continues to
have oracle access to Ek(·). Finally, A outputs a bit b′. We say that A succeeded if b′ = b and in
such a case we write Exptcpa(A) = 1.

Definition 4.2 An encryption scheme E is (t, ε)-indistinguishable under chosen-plaintext attacks
(CPA secure) if for every adversary A that runs for at most t steps,

Pr[Exptcpa(A) = 1] <
1
2

+ ε

We note that according to this definition, an encryption scheme must be probabilistic. Question:
why is it important that a message encrypted twice does not result in the same ciphertext (e.g.,
bombing locations by Japanese in WW2)?

Constructing CPA-secure encryption schemes. The idea behind our construction of a CPA-
secure scheme is to use the pseudorandom function to hide the message. That is, let F be a
pseudorandom function mapping n-bit strings to n-bit strings (recall that the key k is also of
length n). The construction is as follows:

• Key generation: k ∈R {0, 1}n

• Encryption of m ∈ {0, 1}n: choose r ∈R {0, 1}n; compute Fk(r)⊕m; output c = (r, Fk(r)⊕m).

• Decryption of c = (r, f): compute m = Fk(r)⊕ f

Intuitively, security holds because an adversary cannot compute Fk(r) and so cannot learn anything
about f . More exactly, like for the stream cipher, if we replace Fk(r) with a truly random function,
then the scheme obtained would be perfectly secret, unless the same r is used twice. Barring this
“bad event”, security will once again follow from the perfect secrecy of the one-time pad.
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Theorem 4.3 If Fk is a (t, ε)-pseudorandom function, then the encryption scheme (K, E,D) is
(t′, ε′)-indistinguishable under chosen-plaintext attack, where t′ = O(t/n) and ε′ = ε + t′/2n.

Proof Sketch: We present a proof sketch only. Our proof follows a general paradigm for working
with pseudorandom functions. First, we analyze the security of the scheme in an idealized world
where a truly random function is used. Next, we replace the random function with a pseudorandom
one, and analyze the difference.

We begin by analyzing the security in the case that F is a truly random function. In this case,
the only way that the adversary can learn anything about b is if the challenge ciphertext equals
(r, Fk(r)⊕mb) and r has been seen before. Since r is chosen uniformly from {0, 1}n, the probability
that this r will appear in at least one other call to the encryption oracle is at most t′/2n. (This
follows from the fact that the random string r is chosen uniformly in each oracle call to Ek(·) and
the adversary has no control over it. Then, the probability that one of these uniformly chosen
strings equals the r used in generating the challenge equals 1/2n for each call.2 Since there at most
t′ oracle calls, the probability follows.) We conclude that the encryption adversary’s probability of
success in this case equals 1/2 + t′/2n where t′ is the adversary’s running-time.

Next, we replace the random function with a pseudorandom function. This can only change the
success of the adversary by at most ε (otherwise, the pseudorandom function can be distinguished
from random with probability greater than ε). Therefore, the probability of outputting b′ = b
here is at most 1/2 + ε + t′/2n. The above holds as long as the distinguisher constructed from the
adversary (that we use to contradict the security of the pseudorandom function) runs for at most t
steps. It therefore remains to compute the overhead for simulating the CPA-game for the adversary
A. Essentially, this simulation involves calling the function oracle and computing XORs. So, if the
encryption adversary runs in time t′, the distinguisher will run in time at most t = O(t′n). We
conclude that if F is a (t, ε)-PRF then, (K, E,D) is (t′, ε′)-pseudorandom, where t′ = O(t/n) and
ε′ = ε + t′/2n.

Suggested exercise: Write a more formal proof of the above theorem.

Remarks:

1. Extending the analysis: Our above analysis includes parameters t and ε only. Typically, the
number of queries to the encryption or pseudorandom function oracle is also included (we
just used t′ as an upper-bound on this value). The reason for this is that it may be realistic
to run for 240 steps, but it would be much harder to obtain so many encryptions. This is
especially the case, for example, if encryption takes place on a (relatively slow) smart card.

2. Efficiency of the scheme: Notice that the encryption scheme above has the drawback that
the bandwidth is doubled. This can be removed if (a) a counter is used (this requires storing
and remembering state) or (b) it is guaranteed that the same message is never encrypted
twice. However, the practice of encrypting by Ek(x) = Fk(x) is in general not secure.

2In order to clarify this further, one can think of changing the CPA experiment in the following way. First choose
r to be used in generating the challenge Ek(mb). Then, start the experiment and answer the oracle calls as before.
When the challenge is to be generated, use r and continue as before. This is exactly the same because all strings r
are uniformly and independently distributed. However, in this context it is clear that the probability of obtaining r
again is t′/2n.
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Block ciphers. From here on, we will call a pseudorandom permutation that is used for en-
cryption a block cipher. We remark that by “permutation” here, we mean that the function
Fk : {0, 1}n → {0, 1}n is 1–1. Furthermore, given k it is possible to efficiently invert Fk(x) and
obtain x. The block size of such a cipher is n (i.e., this is the number of bits in its domain and
range).

We note that the “attack model” is extended for pseudorandom permutations by providing the
distinguisher with both access to Fk(·) and F−1

k (x).

4.3 DES – The Data Encryption Standard

DES was developed in the 1970s at IBM (with “help” from the NSA), and adopted in 1976 as the
US standard, and later as an international standard. The standard was recently replaced by the
Advanced Encryption Standard (AES). Nevertheless, DES is still used almost everywhere. We will
now study the DES construction.

Feistel structure. In order to construct a block cipher that is invertible, we have one of two
options:

1. Use invertible operations throughout: this has the drawback of limiting our freedom.

2. Use operations that are not all invertible: however, the overall structure must be invertible.

A Feistel structure is a way of using non-invertible operations in the construction of an invertible
function. See Figure 4.1; the function f in the diagram is not invertible and is where the key is
used.

 
 

Left Half Right Half 

f ���� 

f ���� 

Figure 4.1: The Feistel Structure

Notice that the overall structure can be inverted by working from the bottom-up, and always
computing f and not f−1. Each invocation of f is called a round of the structure. Notice that a
single round of a Feistel structure only hides half of the input. We therefore repeat this at least
twice. Actually, we repeat it many times until sufficient security is obtained.

The DES structure. The DES block cipher is a Feistel structure. It has a 64 bit input/output
(i.e., the block size is 64 bits) and it uses a key of size 56 bits (it is actually 64 bits, but 8 bits are
used for redundancy for the purpose of error detection). The non-invertible function in the Feistel
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structure of DES is f : {0, 1}32 → {0, 1}32 and uses a 48 bit subkey. There are exactly 16 rounds;
in round i, a subkey ki is used which is a subset of 48 out of the 56 bits of the full key K. The way
ki is chosen in each round is called the key schedule.

We note that before and after the Feistel structure, DES actually applies a fixed and known
permutation to the input and output. This slows down software implementations (the computation
of this permutation takes about 1/3 of the running time, in contrast to hardware where it takes no
time). We will ignore the permutation as it plays no security role, beyond slowing down attackers
who use software.

The DES f function. The f function is constructed as follows. Let E be an expansion function,
E : {0, 1}32 → {0, 1}48. This expansion works by simply duplicating half of the bits that enter f .
Now, for x ∈ {0, 1}32 that enters f , the first step is to compute E(x) ⊕ k where k is the subkey
of this round (note that this is where the dependence on the key is introduced). Next, the result
is divided into 8 blocks of size 6 bits each. Each block is then run through a lookup table (called
an S-box), that takes 6 bits and outputs 4 bits. There are 8 S-boxes, denoted S1, . . . , S8. Notice
that these box are not invertible. The result of this computation is 8 x 4 = 32 bits (because the
S-boxes reduce the size of the output). The computation of f is then completed by permuting the
resulting 32 bits. We note that the expansion function E, the S-boxes and the final permutation
are all known and fixed. The only unknown quantity is the key K. See Figure 4.2 for a diagram of
the construction.

 
 

32 bit 
input 

48 bit subkey 

E 

48 bits 

� 

6 6 6 6 6 6 6 6 
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Permutation (32 bits) 

Figure 4.2: The DES f function

The key schedule works by dividing the 56 bits of the key into two 28 bit blocks. Then, in each
round, 24 bits are chosen from each block; the first 24 bits affect only the choices in S-boxes
S1, . . . , S4 and the second 24 bits affect only the choices in S-boxes S5, . . . , S8.
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The S-boxes. The definition of the S-boxes is a crucial element of the DES construction. We
will now describe some properties of these boxes:

1. Each box can be described as a 4 x 16 table (64 entries corresponding to 26 possibilities),
where each entry contains 4 bits.

2. The 1st and last input bit are used to choose the row and the 2-5th bits are used to choose
the column.

3. Each row in the table is a permutation of 0, 1, 2, . . . , 15.

4. Changing one input bit, always changes at least two output bits.

5. The S-boxes are very far from any linear function from 6 bits to 4 bits (the hamming distance
between the output mapping and the closest linear function is very far).

The above properties are very important, in order to enhance the so-called avalanche effect.

Avalanche effect: small changes to the input (or key) lead very quickly (i.e., within a few rounds)
to major changes in the output. We will now analyze how DES achieves this effect. In order to do
this, we will trace the hamming distance between the ciphertexts of two plaintexts that differ by
just a single bit.

If the difference is in the side of the input that does not enter the first f -function, then the
hamming distance remains 1. This part of the input is next used as input to f . If this is not
expanded, then the hamming distance remains 1 after the expansion function and XOR with the
key. Now, due to the above-described properties of the S-boxes, we have that at least 2 output bits
are changed. The permutation then spreads these outputs into far-away locations, so that in the
next round the inputs are different in at least 2 S-boxes. Continuing in the above line, we have
that at least 4 output bits are modified and so on.

We can see that the avalanche effect grows exponentially and is complete after 4 rounds (i.e.,
every bit has a chance of being changed after 4 rounds - this is not the case after 3 rounds).

A complete description of the DES standard can be obtained from the FIPS (Federal Information
Processing Standards Publications) website of NIST (National Institute of Standards and Technol-
ogy). The actual document can be obtained from:

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf



Lecture 5

Block Ciphers (continued)

5.1 Attacks on DES

In this part of the lecture we will understand more about the security of DES by considering attacks
on it. Our attacks will be mainly for reduced-round variants of DES. Recall that DES has a 16-
round Feistel structure; we will show attacks on DES when the number of rounds is significantly
reduced.

In all of our attacks, we assume that the adversary has a number of plaintext/ciphertext pairs
that were generated by an “encryption” oracle for DES. Furthermore, in Section 5.2.1, we will
assume that the adversary can query the oracle for encryptions. This is analogous to either a
chosen-plaintext attack, or more appropriately, a distinguisher for a pseudorandom permutation.
(Recall that DES, or any block cipher, within itself is supposed to be a pseudorandom permutation
and not a secure encryption scheme.) The lack of clear distinctions between encryption schemes
and pseudorandom permutations is very problematic. We do not clarify it here because we wish to
use the terminology of block ciphers as encryption that is used in practice. Nevertheless, we hope
that it is clear that when we refer to block ciphers, we always mean pseudorandom permutations
(even if the block cipher is denoted Ek).

5.1.1 Single-Round DES

In this case, if we are given a plaintext x = x1, x2 and its corresponding ciphertext y = y1, y2, then
we know the input and output to the f -function completely. Specifically, the input to f equals x2

and the output from f(x2) equals y1⊕x1. In order to obtain the key, we will look inside the S-boxes.
Notice that given the exact output of f , we can immediately derive the output of each S-box. As
we have seen, each row of an S-box is a permutation over 0, . . . , 15. Therefore, given the output
of an S-box, the only uncertainty remaining is from which row it came. Thus, we know the only
4 possible input values that could have occurred. Notice that since we also know the input value
to f , this gives us 4 possible choices for the portion of the key entering the S-box being analyzed.
The above is true for each of the 8 S-boxes, and so we have reduced the possible number of keys to
48 = 216. We can try all of these, or we can try a second message and use the same method. The
probability of an intersection is very low.

* Lecture notes for an undergraduate course in cryptography. Yehuda Lindell, Bar-Ilan University, Israel, 2005.
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5.1.2 Two-Round DES

Let x = x1, x2 be the input and y = y1, y2 the output of the two-round DES on x. Then, we know
that the input into f in the first round equals x2 and the output of f in the first round equals
y1⊕x1. Furthermore, we know that the input into f in the second round equals y1 and the output
is y2⊕x2. We therefore know the inputs and outputs of f in both rounds, and we can use the same
method as for single-round DES. (It is useful to draw a two-round Feistel structure in order to be
convinced of the above.)

5.1.3 Three-Round DES

In order to describe the attack here, we first denote the values on the wires as in Figure 5.1 below.
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Figure 5.1: Three round DES

We now show an important relation between the values on these wires. First, note that a = c⊕d
and g = f ⊕ d. Therefore, a ⊕ g = c ⊕ f . Since a and g are known (from the input/output), we
have that c⊕ f is known.

We conclude that we know the inputs to f1 and f3, and the XOR of their outputs. Namely,
have the following relation f1(b)⊕ f3(h) = a⊕ g, where all of b, h, a and g are known.

The attack. The subkeys in each round are generated by rotating each half of the key. The
left half of the key always affects only S1, . . . , S4 and the right half of the key always affects only
S5, . . . , S8. Since the permutation after the S-boxes is fixed, we also know which bits come out of
which S-box.

Now, there are 228 possible half-keys. Let kL be a guess for the left half of the key. We know
b and so can therefore compute the output of S1, . . . , S4 for the value c in the case that kL is the
left half-key. Likewise, we can compute the same locations for the value f by using input h and
working with the guessed half-key kL. We can now compute the XOR of the values obtained by
this guess, and see if they match the appropriate bits in a ⊕ g which is known (recall that above
we have seen that c⊕ f = a⊕ g). Since we consider 16 bits of output, an incorrect key is accepted
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with probability approximately 2−16. There are 228 keys and so approximately 212 keys will pass
the test as a potential left half of the key.

We can carry out the above separately for each half in time 2 · 228 and obtain approximately
212 candidates for the left half and 212 candidates for the right half. Overall, we remain with 224

candidates keys and we can run a brute-force search over them all (since anyway 224 < 228).
The total complexity of the attack is 228 + 228 + 224 ≈ 229.

5.1.4 Brute Force Search

We conclude with the trivial attack that works for all encryption schemes: a brute force search
over the key space. Such an attack works by trying each possible key k and comparing the result
of DESk(m) to the known ciphertext c for m. If they match, then with high probability this is
the correct key. (We can try one or two more plaintexts to be very certain.) For DES, such an
attack requires 255 encryptions. Unfortunately, this amount of work is no longer beyond reach for
organizations with enough money to build powerful computers, or for large groups of people who
are willing to distribute the work over many computers.

5.1.5 The Best Known Attacks on Full DES

The only attacks on the full 16 round DES that go below the 255 time barrier are due to Biham and
Shamir [7], and Matsui [27]. Biham and Shamir’s attack is based on differential cryptanalysis and
requires obtaining 247 chosen plaintext/ciphertext pairs. This was a breakthrough result in that
it was the first to beats an exhaustive search on the full 16-round DES. However, in practice, it is
far more feasible to run an exhaustive search than to obtain so many chosen plaintext/ciphertext
pairs. Later, Matsui used linear cryptanalysis to to further reduce the attack to one whereby it
suffices to see 243 plaintext/ciphertext pairs. (Note that Matsui’s attack reduces both the amount
of pairs, but also does not require chosen pairs.) Once again, an exhaustive search on the key space
is usually more feasible than this.

5.1.6 Further Reading

In this course, we do not have time to show more sophisticated attacks on DES. Two important at-
tack methodologies are differential cryptanalysis and linear cryptanalysis. We strongly recommend
reading [7]. It suffices to read the shorter conference version from CRYPTO’90 (a few hours of
work should be enough to get the idea). If you have difficulty obtaining it, I will be happy to send
you a copy. However, first check in the library in the Lecture Notes in Computer Science series
(LNCS), Volume 537, Springer-Verlag, 1991.

5.2 Increasing the Key-Size for DES

As we have seen, DES is no longer secure enough due to the fact that its key size is too small. We
now consider potential ways of increasing this size.

5.2.1 First Attempt – Alternating Keys

Instead of using one 56-bit key, choose two independent 48 bit keys k1 and k2. Then, use k1 in
the odd rounds (1, 3, 5 etc.) of the Feistel structure, and use k2 in the even rounds. Notice that
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decryption is exactly the same except that k2 is used in the odd rounds and k1 in the even rounds.
The total key size obtained is 96 bits.

We now show that it is possible to find the key in 249 steps, using oracle queries to the DES
encryption machine. In order to see this, first assume that we have found k1. We can then eliminate
the first round because we can compute fk1(x2)⊕x1 (where the plaintext equals x = x1, x2). More
specifically, for input x = x1, x2 we wish to find an input x′ = x′1, x′2 such that after the first
round, the values on the wires are x = x1, x2. This can be achieved by setting x′2 = x2 and
x′1 = fk1(x

′
2) ⊕ x1. Thus, after the first round we have x2 still on the right wire and fk1(x

′
2) ⊕ x′1

on the left wire. But, fk1(x
′
2)⊕ x′1 = fk1(x

′
2)⊕ fk1(x

′
2)⊕ x1 = x1 as required. Likewise, we can add

another round of k1 at the end by computing y′1 = y1 ⊕ fk1(y2) and y′2 = y2.
It is now possible to use the encryption oracle to essentially decrypt a value. That is, recall that

decryption is the same as encryption, except that the order of k1 and k2 is reversed. By adding
the rounds as above, we achieve a decryption oracle from the encryption oracle. Furthermore, this
decryption oracle can be used to test our guess of k1.

The actual attack works as follows. First, choose an input m and obtain a ciphertext c by
querying the oracle. Next, guess k1 and ask for an encryption of c′ where c′ is computed by
removing the first round using k1. Upon obtaining the result, use k1 again to add another round
and see if the result equals m. If yes, then k1 is correct. Continue in this way until the correct k1

is found. Once k1 is found, use a brute force search on k2. We obtain that the entire key is found
in 249 invocations of DES, and is thus even weaker than the original DES.

5.2.2 Second Attempt – Double DES

In Double-DES, two independent 56-bit keys k1 and k2 are chosen. Then, encryption is obtained
by Ek1,k2(m) = DESk2(DESk1(m)). Thus, we obtain a key-size of 2112, which is much too large for
any brute force search.

In this section, we describe a generic attack on any method using “double encryption”. The
attack is called a “meet-in-the-middle” attack and finds the keys approximately 256 time and 256

space. (We note that this much space is most probably not feasible, but nevertheless, the margin
of security is definitely not large enough.) Since the attack is generic, we will refer to an arbitrary
encryption scheme E of key-size n and show an attack requiring O(2n) time and O(2n) space. We
will denote c = Ek2(Ek1(m)), c1 = Ek1(m), and c2 = E−1

k2
(c). (Thus, for the correct pairs of keys,

c1 = c2.)
The attack works as follows. Let (m, c) be an input/output pair from the double-encryption

scheme. Then, build a data structure of pairs (k1, c1) sorted by c1 (this is built by computing
c1 = Ek1(m) for every k1 where m is as above). The size of this list is 2n. Similarly, we build a list
of pairs (k2, c2), sorted by c2, by computing c2 = E−1

k2
(c) for every k2 using the c above. Note that

sorting these lists costs 2n only because we can use a counting sort. That is, we start with a table
of size 2n and use the c1 and c2 values as indices into the table. (The entries in the table contain
the appropriate k1 and k2 values.)

Next, we find all the pairs (k1, c1) and (k2, c2) such that c1 = c2. Since the lists are sorted
according to c1 and c2, it is possible to do this in time 2 · 2n. Now, we expect in the order of
2n pairs because the range of a random function is most of 2n. Therefore, each value ĉ ∈ {0, 1}n

should appear approximately once in each table. This implies that each ĉ in the first table should
have approximately one match in the second table. This yields approximately 2n candidates.

The attack is concluded by testing all of these candidate pairs of keys on a new pair (m′, c′)
obtained from the double-encryption oracle. Given a few such input/output pairs, it is possible to
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be sure of the correct pair (k1, k2) with very high probability.

5.2.3 Triple DES (3DES)

The extension of choice that has been adopted as a standard is Triple-DES (or 3DES). There are
two variants:

1. Choose 3 independent keys k1, k2, k3 and compute Ek1,k2,k3(m) = DESk3(DES−1
k2

(DESk1(m))).

2. Choose 2 independent keys k1, k2 and compute Ek1,k2(m) = DESk1(DES−1
k2

(DESk1(m))).

The reason for this strange alternation between encryption and decryption is to enable one to set
k1 = k2 = k3 and then obtain single-DES encryption with a triple-DES implementation.

It is strongly believed that 3DES is secure. Its drawback is that it is quite slow since it requires
3 full encryption operations. Its lack of flexibility with respect to key size, its speed and its size are
all factors that led to the introduction of AES (the Advanced Encryption Standard) in 2000. We
will not have time to describe the AES encryption scheme here.

5.3 Modes of Operation

Until now, we have considered encryption of a single block (for DES, the block size is 64 bits but
it could be any value); we denote the block-size from here on by n. An important issue that arises
for block ciphers is how to encrypt messages of arbitrary length. The first issue to deal with is
to obtain a ciphertext of length that is a multiple of n. This is obtained by padding the end of a
message by 10 · · · 0. (Actually, there remains a problem in the case that a message is of length c ·n
or c · n − 1 for some value c because in this case some bits may be lost. This is solved be adding
an additional block in this case.) A mode of operation is a way of encrypting many blocks with a
block cipher. We present the four most popular modes of operation, even though some of them are
clearly not secure. All four modes are presented in Figure 5.2.

Mode 1 – Electronic Code Book Mode (ECB). In this mode, all blocks are encrypted
separately. We note that this mode is clearly not secure, first and foremost because the encryption
is deterministic and we know that probabilistic encryption is necessary. Furthermore, the blocks
are of a small size, so repeated blocks can be detected. This is not just a “theoretical problem”
because headers of messages are often of a fixed format. Therefore, the type of message can easily
be detected. We note one plus here in that an error that occurs in one block affects that block only.

There are other issues related to data integrity and authentication that are typically raised in
the context of modes of operation. However, this is a different issue and our position is that these
issues should not be mixed. We will discuss message authentication in Lecture 7.

Mode 2 – Cipher Block Chaining Mode (CBC). In this mode, the ith block is encrypted
by XORing it with the i− 1th ciphertext block and then encrypting it. The IV value is an initial
vector that is chosen uniformly at random. We stress that it is not kept secret and is sent with
c. Here, the encryption is already probabilistic. It has been shown that if Ek is a pseudorandom
permutation, then the CBC model yields a CPA-secure encryption scheme [3]. Some drawbacks
of this mode are: encryption must be carried out sequentially (unlike decryption which may be
executed in parallel), and error in transmission affects the garbled block and the next one.
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Mode 3 – Output Feedback Mode (OFB). Essentially, this is a way of turning a block
cipher into a stream cipher. As before, a random IV is used each time and sent together with the
ciphertext. Here, encryption and decryption are strictly sequential, but most of the encryption
work can be carried out independently of the plaintext. Regarding errors, a flipped bit affects only
a single bit of the output (unless the error is in the IV).

Mode 4 – Cipher Feedback Mode (CFB). Here the stream depends on the plaintext as
well as the IV. An advantage of CFB over OFB is that decryption can be carried out in parallel.
However, encryption is strictly sequential and depends also on the plaintext. Regarding errors, a
single bit affects a single bit in the current block and the entire next block.
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Figure 5.2: Modes of Operation
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Lecture 6

Collision-Resistant (Cryptographic)
Hash Functions

In this lecture, we introduce a new primitive: collision-resistant hash functions. Recall that hash
functions (as used in data structures and algorithms) are functions that take arbitrary-length strings
and compress them into shorter strings. In data structures, the aim is for these short strings to be
used as indices in a table; as such the output of the hash function is very short. Furthermore, it is
desired that the hash function yields as few collisions as possible (so that only a few elements will
end up in each entry in the table). We remark that a truly random function would do the best job
here (however, such functions require exponential storage).

Collision-resistant hash functions are also compression functions that take arbitrary-length
strings and output strings of a fixed shorter length. However, the “desire” in data structures
to have few collisions is converted into a mandatory requirement. Specifically, a collision-resistant
hash function is secure if no adversary (running in a specified time) can find a collision. That is,
let h be the function. Then, no adversary should be able to find x 6= y such that h(x) = h(y).
As in the case of data structures, a random function provides the best collision resistance, because
seeing the output of the function in one place is of no help in seeing the output in a different place.

6.1 Definition and Properties

We now provide a definition of collision-resistance for cryptographic hash functions. We note that
any collision-resistant hash function must have a key of some sort. This is due to the fact that
finding collisions must be hard for all adversaries. In particular, it must be hard for all adversaries
in the family of algorithms {Ax,y | x, y ∈ {0, 1}∗} where each Ax,y just outputs the pair x and
y. Now, for every fixed function h, there exist x′ and y′ such that h(x′) = h(y′); therefore, the
adversary Ax′,y′ with this x′ and y′ will “find” a collision. However, when keys are used, it is possible
to require that every adversary will succeed with low probability; we note that this probability is
also over the choice of the key.

We stress that unlike for encryption and other cryptographic tasks, the hash key is public knowl-
edge once it has been chosen. As previously, for simplicity we will assume that the key for a hash
function h : {0, 1}∗ → {0, 1}n is of length n.

Definition 6.1 (collision-resistant hash functions): Let H = {hk}k∈{0,1}n be a polynomial-time

* Lecture notes for an undergraduate course in cryptography. Yehuda Lindell, Bar-Ilan University, Israel, 2005.
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computable family of functions such that for every k ∈ {0, 1}n, hk : {0, 1}∗ → {0, 1}n. We say that
H is (t, ε)-collision resistant if for every adversary A running for at most t steps

Prk←{0,1}n [A(k) = (x, y) such that hk(x) = hk(y) & x 6= y] < ε

Inherent limitations on collision resistance. As we have mentioned, the “best” collision
resistance is obtained by random functions. We therefore begin by studying the collision resistance
of a truly random function h such that h : {0, 1}∗ → {0, 1}n.

First, it is clear that any adversary can find a collision in h in time 2n + 1. This holds by the
pigeon-hole principle (by computing h(xi) for 2n + 1 different values of xi, we must obtain xi 6= xj

such that h(xi) = h(xj)).
However, by the birthday paradox, a collision can actually be found in time

√
2n = 2n/2. That

is, by computing h(xi) for
√

2n random values xi, we obtain that with probability over 1/2 we will
have obtained xi 6= xj such that h(xi) = h(xj). We therefore conclude that an inherent limitation
on the security of collision-resistant hash functions is that the running-time t of the adversary must
be considerably lower than

√
2n.

The Birthday Paradox. For the sake of completeness, we provide a proof of the birthday
paradox. Actually, we will prove that the expected number of collisions with

√
2n random values

equals 1; this is simpler to prove.
Consider a game with N bins and q balls. The q balls are thrown randomly into the bins (i.e.,

with the uniform distribution), and we ask for what value of q do we obtain that the expected
number of bins with 2 or more balls is at least 1. In the context of hash functions, the number of
bins equals the size of the range of the hash function (i.e., N = 2n) and throwing a ball uniformly
into a bin is equivalent to the process of choosing a random x and computing h(x), for a random
function h.

Denote the balls by b1, . . . , bq and define a boolean random variable Xi,j such that Xi,j = 1 if
and only if balls i and j fall in the same bin. The probability that two given balls i and j fall in
the same bin equals 1/N exactly. Therefore, by the definition of expectation:

E[Xi,j ] = 1 · 1
N

+ 0 ·
(

1− 1
N

)
=

1
N

By the linearity of expectations, the expected number of pairs of balls that fall in the same bin is
given by:

q∑

i=2

i−1∑

j=1

E[Xi,j ] =
(

q
2

)
1
N

=
q(q − 1)

2N

Therefore, when q ≈ √
N , we obtain that the expected number of collisions equals 1.

Collision-resistant hash functions are one-way. An important and interesting property of
one-way hash functions is that they are hard to invert; such functions are called one-way. We will
not provide a formal definition of such functions in this course. Informally speaking, a function f
is one-way if it can be efficiently computed, and if for sufficiently large inputs, the probability of
finding some preimage for f(x) where x is uniformly chosen, is very small.

We claim now that collision-resistant hash functions are one-way. This follows from the fact
that if it is possible to find a preimage for h(x), then we can also find a collision. In order to see
this, notice that for any pair x 6= y such that z = h(x) = h(y), it is impossible to know if z was
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Figure 6.1: The Merkle-Damg̊ard Construction

obtained by computing h(x) or h(y). Now, consider a collision-finding algorithm that chooses a
random x, computes z = h(x) and gives z to the preimage-finding algorithm. Upon obtaining back
a preimage w such that f(w) = z, if w = x then no collision was found. However, if w = y, then a
collision has been found (because x 6= y and h(x) = h(y) = z). Since z could have been produced
from x or y with the same probability (this value is randomly chosen), the probability that the
preimage is the same value as was originally chosen is at most 1/2.

Un-keyed hash functions. As we have seen, any collision-resistant hash function must have
keys (even though they are public). Nevertheless, in practice, unkeyed collision-resistant hash
functions are used. The best of these functions (e.g., SHA-1) have withstood years of attack and
is widely believed to be collision-resistant.1

6.2 Constructions of Collision-Resistant Hash Functions

Very often, collision-resistant hash functions are constructed in two stages. First, a collision-
resistant compression/hash function c(·) is constructed, where c : {0, 1}n+t → {0, 1}n. That is, c(·)
compresses messages of a fixed length n + t to messages of length n; this is called a fixed-length
hash function. Next, a collision-resistant hash function h : {0, 1}∗ → {0, 1} is constructed using c(·);
note that h takes inputs of any arbitrary length. The key is used in choosing the function c(·); we
will ignore this from here on.

Due to time constraints, we will only have time to show how to extend a fixed-length compres-
sion function to a full-fledge collision-resistant hash function. Constructions of fixed-length hash
functions can be found in [15].

The Merkle-Damg̊ard construction [16, 29]. The idea of the construction is to break the
input up into blocks, and iteratively apply the fixed-length hash function to the new block, and the
result of the previous application; see Figure 6.1. The output of the function is the output of the
last iteration and the length of the input.

For simplicity, we will define the Merkle-Damg̊ard construction for the case that t = n (i.e., the
compression function is such that its input is twice the length of its output). Let c(·) : {0, 1}2n →
{0, 1}n be a compression function. Then, upon receiving any input x of length N , define x =
x1, x2, · · · , x` where ` = dN/ne. That is, each block is of length n (the last block can be padded
with zeros). Furthermore, let y0 = IV be a fixed initial vector of length n (this can even be 0n).
Then, for every i = 1, . . . , `, compute yi = c(yi−1, xi). Finally, define h(x) = (y`, |x|). Note that
the IV is used in order to ensure that h is applied on inputs of length 2n each time (although we
could just as easily applied h to x1 and x2).

1We note, however, that some widely-used hash functions, like MD5, are known to not be collision-resistant.
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Theorem 6.2 Assume that c : {0, 1}2n → {0, 1}n is (t, ε)-collision-resistant. Then, the Merkle-
Damg̊ard construction described above yields a (t′, ε′)-collision-resistant hash function h : {0, 1}∗ →
{0, 1}, for ε′ = ε and t′ = t/2.2

Proof: Assume by contradiction that there exists an adversary A that runs in time t′ as above,
and with probability ε′ outputs x 6= y such that h(x) = h(y). We differentiate between two cases
in which a collision is indeed found by A:

1. Case 1 – |x| 6= |y|: In this case, it must be that h(x) 6= h(y) because the lengths |x| and |y|
are in the output of h.

2. Case 2 – |x| = |y|: Let α1, . . . , α` and β1, . . . , β` be the outputs of c(·) while computing h(x)
and h(y), respectively. (That is, αi = c(αi−1, xi) as described above.) Now, since h(x) = h(y)
it follows that c(α`−1, x`) = c(β`−1, y`). If (α`−1, x`) 6= (β`−1, y`), then we have finished
because we have found a collision in c. Otherwise, we continue backwards until we find some
i for which c(αi−1, xi) = c(βi−1, yi) and yet (αi−1, xi) 6= (βi−1, yi). Note, that such an i must
exist because if (αi−1, xi) = (βi−1, yi) for every i, then x = y. For this i, once again, we have
found a collision.

This yields an adversary Ac that finds a collision in c. Specifically, Ac invokes A. Then,
upon receiving A’s output x and y, adversary Ac first checks if h(x) = h(y). If not, Ac halts.
If yes, it computes the series α1, . . . , α` and β1, . . . , β` and finds the index i as above (as
argued above, such an i must exist). Ac then outputs the pair of messages x′ = (αi−1, xi)
and y′ = (βi−1, yi) and halts.

Clearly, Ac finds a collision with probability ε = ε′. Furthermore, the running-time of Ac

equals the running-time of A with the additional overhead of computing h twice and compar-
ing ` = |x|/n strings of length n. Therefore, under the assumption that A’s running-time is
significantly longer than the time to compute h twice (see Footnote 2), we have that t < 2t′,
as required.

This completes the proof.

Efficiency considerations. Notice that the hash function h can be computed by carrying out
one pass on the input, while storing a small amount of state information. This makes computation
of h very efficient, even for very large files.

Hash functions in practice. The most popular collision-resistant hash functions used today
are MD5 and SHA-1. Collisions have been found in MD5, and so this hash function should not be
used from now on. SHA-1 is the accepted standard of NIST; it has an output of size 160 bits and
so is not vulnerable to a birthday attack. For information about MD5 and SHA-1, see [31] and [40],
respectively.

6.3 Popular Uses of Collision-Resistant Hash Functions

One problem that arises in practice is how and where to store the password file that is used for
login. Clearly, if this file is stolen, then all user’s passwords are revealed. In Unix, the solution

2We assume for simplicity that the running-time of any adversary for the Merkle-Damg̊ard construction is signif-
icantly greater than the time it takes to compute h on its two output strings x and y.
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to this problem is to store only hashed passwords in the password file. That is, each entry in the
table is (useri, h(pwdi)) where h is a collision-resistant hash function. Then, when the Unix server
receives a request for logon of 〈useri, pwdi〉, it computes h(pwdi) and compares it with the entry
in the table.

The idea behind this construction is that, as we have seen, collision-resistant hash functions are
one-way. Therefore, obtaining the password file does not reveal the individual passwords which are
needed for login. (Notice that knowing h(pwdi) does not help for logging into the server, because
the server expects to receive pwdi and not h(pwdi).)

Dictionary attacks on passwords. The idea of using a hash function to protect the password
file is OK as a secondary measure. Specifically, if the passwords are uniformly chosen from a large
set, then it is possible to formally justify this use. However, passwords are typically not uniformly
distributed, in which case one-wayness is not guaranteed. Furthermore, they typically have low
entropy (i.e., are based on a short amount of randomness). Therefore, it is possible to launch a
dictionary attack that takes the file and tries all “likely” passwords. This works very well in practice
(except for the select few users who use long and random passwords).

In the Unix system, this attack is somewhat limited by actually storing 〈useri, salti, h(salti, pwdi)〉
where salti is a random string chosen independently for each user. Since the “salt” is public, it
does not slow down the dictionary attack. However, it does have the effect of forcing an attacker
to repeat the dictionary attack for every entry. That is, it is not possible to build one big table
and then just do lookup.

6.4 The Random Oracle Model

Collision-resistant hash functions that are used in practice are often considered to behave like
random functions. Of course, this is absurd because these functions have very short descriptions
and so do not look at all like a random function. Nevertheless, in practice, this view has been used
to provide justification for the security of some schemes that otherwise cannot be proven secure.
Such security claims are called “proofs in the random oracle model”.

In the random oracle model, hash functions (like SHA-1) are used in constructions of different
cryptographic schemes. Then, a proof of security is provided that holds when the hash functions
are replaced with truly random functions. Such claims are essentially heuristic proofs of security
for the original scheme; they are heuristic because the original scheme that does not use a random
function, but rather a specific collision-resistant hash function. We warn that such reasoning is very
problematic, and counter-examples have been demonstrated. Nevertheless, in some cases where the
only efficient protocols that are known are proven secure in the random oracle model, this can be
a useful tool. For more information on this issue see [5] (for arguments in favour of the model)
and [12] (for arguments against).
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Lecture 7

Message Authentication

In this lecture, we are going to consider a new security problem. Until now, the only application
that we have seen is that of encryption where the aim of the parties is to communicate privately
over an open channel. However, there are problems that may arise from communication over an
open channel that are not connected to privacy. For example, consider the case that a party A
sends an email to party B that contains a large order for some merchandise. Upon receiving such
an order over an open communication line, party B has to ask itself two questions:

1. Did party A really send the order?

2. If yes, is the order that B received the order that A actually sent (and not, for example, that
the size of the order was somehow changed).

Such examples are very common. For example, an order for a bank transfer may not be secret.
However, we should hope that it is not possible to change the order so that instead of transferring
$1,000, the sum is changed to $100,000. This problem is a problem of message authentication and
is distinct from the problem of privacy.

First attempt – encryption. At first sight, it seems that encryption should immediately solve
the problem of authentication as well. That is, if an encrypted message Ek(m) looks like “random
garbage” to an observer, how is it possible for the message to be tampered with. The easiest way to
answer this question is to look at concrete examples. First, consider the one-time pad encryption
scheme (or equivalently any encryption via a stream cipher): Ek(m) = k ⊕ m. Then, given a
ciphertext c that encrypts a message m it is easy to generate a new ciphertext that encrypts m
(i.e., the bitwise complement of m): simply compute c. Likewise, it is possible to flip the last
bit of m and so on. Next, consider the ECB (electronic code-book) mode of encrypting multiple
blocks with a block cipher. Here, blocks can be flipped, thereby changing the encrypted message.
Furthermore, blocks can be garbled without the receiver knowing that this wasn’t the intended
message.

We conclude that in general, in order to achieve authentication, there must be some sort of
additional mechanism that will indicate whether or not the message was tampered with.

Second attempt – encryption with error correction. Another possible solution is to apply
an error correcting code C to the message and then encrypt m together with C(m). It is easy to

* Lecture notes for an undergraduate course in cryptography. Yehuda Lindell, Bar-Ilan University, Israel, 2005.
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see that this is still not sufficient. Once again, consider the one-time pad and consider the simple
parity error correcting code (i.e., C(m) = ⊕|m|i=1mi, or in other words, the parity of m). Then, given
c = (m,C(m)) ⊕ k, it is possible to flip the first and last bits of c (or just to flip an even number
of bits in the first part of the ciphertext). It is clear that the parity bit is still legal.

Third attempt – encryption with collision-resistant hash. In this solution, the message m
is encrypted together with h(m), where h is a collision-resistant hash function. In order to show
that this doesn’t work, we remark that in the case of message authentication, privacy is not an issue.
Therefore, the message m may be known to the adversary (and it would not be wise to assume that
it is not known). Now, let c = Ek(m) = (m,h(m)) ⊕ k and denote c = c1, c2 where c1 “contains”
the encryption of m and c2 “contains” the encryption of h(m). Then, given c = c1, c2 and given
knowledge of the message m, it is possible to compute c′1 = c1⊕m⊕m′ and c′2 = c2⊕h(m)⊕h(m′),
for any message m′ of the same length as m. It is easy to see that the message c′ = c′1, c′2 is a legal
encryption of m′.

7.1 Message Authentication Codes – Definitions

We now provide a (fairly informal) definition of message authentication codes. We are still con-
sidering the “symmetric key” world, and therefore we assume that the communicating parties A
and B share a secret key k. A message authentication code (MAC) is comprised of the following
algorithms:

1. A Key Generation algorithm that returns a secret key k. We assume for simplicity that
k ∈R {0, 1}n and so will not refer to this algorithm in the future.

2. A Tagging algorithm that given a key k ∈ {0, 1}n and an arbitrary-length message m ∈ {0, 1}∗,
returns a tag t = MACk(m). (For simplicity, assume t ∈ {0, 1}n.)

3. A Verification algorithm that given a key k, a message m and a candidate tag t, returns a bit
b = Verifyk(m, t).

It is required that for every key k and every message m, it holds that Verifyk(m, MACk(m)) = 1.
We note that if the tagging algorithm MAC receives only messages of a fixed size (say, n), then we
say that the scheme is a fixed-length MAC.

The message authentication game Exptmac. The aim of the adversary in attacking a MAC
is to generate a legal MAC-tag on a message m′ that was not sent by the parties. (Of course, it
is always possible to copy a tag that was generated by the legitimate parties. We remark that
this raises a very important issue of replay; however, we don’t have time to cover this issue here.)
In order to model the possible influence that the adversary may have on the messages sent and
tagged by the legitimate parties, we allow it full control over the messages that are tagged. The
experiment is defined as follows:

A random key k is chosen. The adversary A is then given full oracle access to the tagging
algorithm MACk(·). At the end, A outputs a pair (m′, t′). Let Q be the set of messages m that A
queried its oracle during the experiment. Then, we say that A succeeded, denoted Exptmac(A) = 1,
if m′ /∈ Q and Verifyk(m′, t′) = 1.
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Definition 7.1 An message authentication scheme MAC is (t, ε)-secure if for every adversary A
that runs for at most t steps, Pr[Exptmac(A) = 1] < ε

We remark that the above attack model that we have defined is called a chosen message attack
because the adversary is given the power to obtain a tag for any message that it chooses.

7.2 Constructions of Secure Message Authenticate Codes

It is immediate to see that a pseudorandom function serves as a good message authentication code.
However, in the typical case that the pseudorandom function receives messages of a fixed length
n, the straightforward application of this yields a fixed-length message authentication code. We
therefore have:

Theorem 7.2 Let Fk be a (t, ε)-pseudorandom function, and for m ∈ {0, 1}n, define MACk(m) =
Fk(m) and Verifyk(m, t) = 1 if and only if Fk(m) = t. Then, the scheme defined by MAC and Verify
is a fixed-length (O(t), ε + 2−n)-secure message authentication code.

Proof: Left for an exercise.

Of course, fixed-length message authentication codes are somewhat unsatisfactory. Fortunately, we
can use collision-resistant hash functions in order to construct arbitrary-length MACs from fixed-
length MACs. In the construction below, we assume that the range of the hash function is {0, 1}n.
We have:

Theorem 7.3 Let (MAC, Verify) be a (t1, ε1)-secure MAC and let H be a (t2, ε2)-collision-resistant
family of hash functions. Furthermore, let tmac equal the time that it takes to compute MAC and let
th be the time that it takes to compute h. Then the scheme (MAC′, Verify′) defined by MAC′k,k′(m) =
MACk(hk′(m)) and Verify′k,k′(m, t) = Verifyk(hk′(m), t), is an arbitrary-length (t3, ε3)-secure mes-
sage authentication code, where t3 = max{ t1

th
, t2

tmac+th
} and ε3 = ε1 + ε2.

Proof: The idea behind the proof of this theorem is as follows. If the MAC adversary finds a
collision in h with probability greater than ε2, then this contradicts the security of H. However,
if no such collision is found, then the security of MAC′ reduces immediately to the security of the
fixed-length scheme MAC. (If no collisions are found, then it is equivalent to the case that only
messages of length-n are used.) The proof follows.1

Let Amac be an adversary attacking the MAC scheme and running in time at most t3. Fur-
thermore, let ε be the probability that Amac succeeds in Exptmac. Now, consider the following two
disjoint events:

1. Amac succeeds in Exptmac and the pair (m′, t′) output by Amac is such that there exists a
message m ∈ Q for which h(m) = h(m′).

2. Amac succeeds in Exptmac and the pair (m′, t′) output by Amac is such that for every m ∈ Q
it holds that h(m) 6= h(m′).

Since the above events are disjoint, and yet cover all possibility of success in Exptmac, it follows
that ε = ε′ + ε′′ where ε′ is the probability that the first event occurs and ε′′ is the probability that
the second event occurs. We now bound the values of ε′ and ε′′.

1This proof will not be given in class, but is provided for completeness. Students are strongly encouraged to read
and understand the proof.
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The reduction to collision resistance. We begin by constructing an adversary Ah for the
hash function. Ah receives a key k′ for the hash function, chooses a key k ∈R {0, 1}n for the
MAC scheme, and invokes Amac. For every query m output by Amac, the adversary Ah computes
t = MACk(hk′(m)), adds m to the set Q (initialized at φ), and returns t to Amac. Then, after
Amac outputs a pair (m′, t′), the adversary Ah checks if there exists a message m ∈ Q such that
h(m) = h(m′). If yes, Ah outputs (m,m′) and halts. (Otherwise, it outputs fail.) First, note that
Ah’s running-time equals the running-time of Amac, plus the time that it takes to compute all of the
MAC and hash values. Using a coarse upper-bound, we have that the number of queries is bounded
by Amac’s running-time. Therefore, if Amac runs in time t(Amac), the adversary Ah runs in time
t(Amac)·(tmac+th). Since H is (t2, ε2)-collision-resistant, we must have that t(Amac)·(tmac+th) < t2.
However, t(Amac) ≤ t3 and t3 ≤ t2/(tmac + th); this therefore holds. Given that this holds, we have
that Ah can succeed with probability at most ε2. Since Ah succeeds in finding a collision with
probability exactly ε′, it follows that ε′ ≤ ε2.

The reduction to the fixed-length MAC. As above, we construct an adversary Aflm for
the fixed-length MAC scheme. Aflm chooses a key k′ for the hash function and invokes Amac. For
every query m output by Amac, the adversary Aflm computes h(m), queries its own MAC oracle,
and returns the reply t that it received back to Amac. Then, after Amac outputs a pair (m′, t′), the
adversary Aflm checks if there exists a message m ∈ Q such that h(m) = h(m′). If yes, it outputs
fail. Otherwise, it outputs (h(m′), t′) and halts. First, note that Aflm’s running-time equals the
running-time of Amac plus the time it takes to compute the hash values. Therefore, we have that
Aflm’s running-time is bounded by t(Amac) · th. Since the fixed-length MAC is (t1, ε1)-secure, we
must have that t(Amac) · th < t1. However, t(Amac) ≤ t3 and t3 ≤ t1/th; this therefore holds. Given
that this holds, we have that Aflm can succeed with probability at most ε1. Since Aflm succeeds
in Exptmac with probability exactly ε′′, it follows that ε′′ ≤ ε1.

Concluding the proof. We have seen that for the value of t3 specified in the theorem state-
ment, it must hold that ε′ ≤ ε2 and ε′′ ≤ ε1. Therefore, ε = ε′ + ε′′ ≤ ε1 + ε2 = ε3. That is, Amac

can succeed with probability at most ε3, as required.

7.3 Practical Constructions of Message Authentication Codes

We discuss two constructions here: CBC-MAC and HMAC. Both constructions are industry stan-
dards and are in wide use.

Fixed-length CBC-MAC. This construction is based on the CBC mode of encryption; see
Figure 7.1. Note that no initial vector IV is used here. The security of this construction is given
in the following theorem:

Theorem 7.4 Let ` be any fixed value. If the block-cipher Ek is a pseudorandom function, then
CBC-MAC is a pseudorandom function for the domain {0, 1}`.

We stress that the theorem holds only for inputs of a fixed length (it doesn’t matter what the length
is, as long as all messages that are used of this length). Of course, if ` is not a multiple of n then
some padding must be used; it suffices to concatenate a single 1 followed by zeros.
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Figure 7.1: The CBC-MAC construction

Variable-length CBC-MAC. We now show that CBC-MAC is not secure for variable-length
messages by constructing an adversary A. The adversary A chooses any message m ∈ {0, 1}n of
length n (recall n is the domain and range of Ek). Then, A queries its MAC oracle with m and
obtains back a tag tm. Next, A queries its MAC oracle with tm and receives back ttm . Finally, A
outputs (m′, t′) where m′ = m‖0n and t′ = ttm . By the iterative nature of the CBC construction,
this is a correct pair.

In order to obtain an arbitrary-length secure MAC via the CBC construction, there are three
options:

1. Apply the pseudorandom function (permutation) to the block length α of the input message
in order to obtain a key kα. Then, compute the original CBC-MAC using the key kα and
send the resulting tag along with the block length.

2. Prepend the message with its block length, and then compute the CBC-MAC (the first block
contains the number of blocks to follow). We stress that appending the message with its block
length is not secure.

3. Use two different keys k1 and k2. Then, compute the CBC-MAC using k1 and apply the
pseudorandom function to the resulting tag, but this time using k2. This has the advantage
that the length of the message need not be known until the end.

The interested student is referred to [4] for more details.

HMAC. Due to lack of time, we will not see the HMAC construction. Loosely speaking, this
construction is based on applying collision-resistant hash functions to the message and a secret
key. We stress that there is no solid reasoning for computing a MAC by MACk(m) = h(k‖m); the
HMAC construction is more involved than this. See [2] for more details.
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Lecture 8

Various Issues for Symmetric
Encryption

In this lecture, we will deal with three distinct topics: how to combine encryption and authenti-
cation, the notion of CCA-secure encryption, and the problem of key management in the world of
private-key encryption.

8.1 Combining Encryption and Message Authentication

Until now, we have seen how it is possible to encrypt messages, thereby guaranteeing privacy. We
have also showed how to generate secure message authentication codes, thereby guaranteeing data
authenticity or integrity. The question that we deal with here is how to obtain both of these goals
simultaneously.

There are three common approaches to combining encryption and message authentication:

1. Encrypt-and-authenticate: Here encryption and message authentication are computed and
sent separately. This methodology is deployed in SSH.

2. Authenticate-then-encrypt: Here a MAC is first computed and then the message and MAC
are encrypted together. This methodology is used in SSL.

3. Encrypt-then-authenticate: Here, the message is first computed and a MAC is then computed
on the encrypted message. This methodology is used in IPsec.

We now discuss each of these approaches; for a full treatment, see [26].

Encrypt-and-authenticate. In this approach, an encryption and message authentication code
are computed and sent separately. That is, let E be an encryption scheme and MAC a message
authentication code. Then, the combined message is simply (Ek1(m), MACk2(m)).

This combination does not yield a secure encryption scheme. First, notice that at least by
definition, a secure MAC does not necessarily imply privacy. Specifically, if MAC is a secure message
authentication code, then so is the scheme MAC′k(m) = (m, MACk(m)). Therefore, the combination
(Ek1(m),MACk2(m)) may actually reveal m. This is enough because any secure methodology should
be secure for any instantiation of the underlying building blocks. (Otherwise, at some later stage

* Lecture notes for an undergraduate course in cryptography. Yehuda Lindell, Bar-Ilan University, Israel, 2005.
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the MAC may be changed with catastrophic results. Notice, that this change may also take place
within some library, and without touching the protocol that uses encrypt-and-authenticate.) For
anyone not convinced by this argument because message authentication codes used in practice do
not reveal information about the message, we note that they are nevertheless typically deterministic
functions of the message and key. It is therefore possible to detect immediately if two encryptions
are of the same message. (Recall that any CPA-secure encryption scheme must not reveal this
information.) In addition, privacy may be compromised due to the same problem as will be outlined
in the authenticate-then-encrypt methodology.

Authenticate-then-encrypt. In this approach, a message authentication code MACk2(m) is first
computed, next the pair (m,MACk2(m)) is encrypted, and finally the ciphertext Ek1(m, MACk2(m))
is sent. This combination also does not yield a secure encryption scheme. In order to see this,
consider the following encryption scheme:

• Let Transform(m) be as follows: any 0 in m is transformed to 00, and any 1 in m is transformed
randomly to 01 or 10. (Note that encodings of this type may be used for any number of
reasons.)

• Define E′
k(m) = Ek(Transform(m)), where E is a stream cipher that works by generating a

new pseudorandom stream for each message to encrypt, and then XORs the stream with the
input message. (For example, this can be obtained by using a secure block cipher in OFB
mode with a new random IV for each encryption.) Note that both the encryption schemes E
and E′ are CPA secure.

We now show an attack on the authenticate-then-encrypt methodology with this encryption scheme.
This attack works under the assumption that an adversary can find out if a given ciphertext is
valid (this assumption is very real in practice where a server returns an error message in case it
receives an invalid message). Given a ciphertext c = E′

k1
(m) = Ek1(Transform(m, MACk2(m))), the

attacker simply flips the first two bits of c (i.e., takes their complement), and queries if the resulting
ciphertext is valid. If yes, then the adversary knows that the first bit of the message sent equals 1;
otherwise it is 0. We conclude that this scheme does not preserve privacy. (We remark that this
same counter-example works for encrypt-and-authenticate as well.)

We stress that this demonstrates that the above combination is not always secure. However,
there are some instantiations that are secure (for example, the specific encryption scheme and MAC
used within SSL are secure); see [26]. Nevertheless, as mentioned above, it is bad practice to use a
methodology whose security depends on specific implementations.

Encrypt-then-authenticate. In this approach, an encryption c = Ek1(m) is first computed,
next a message authentication code MACk2(c) is computed on c, and finally (c, MACk2(c)) is sent.
For any encryption scheme E that is CPA-secure and any secure MAC, this combination is secure.
Intuitively, privacy is preserved because the MAC is computed over c. Therefore, no function of m
is computed that could reveal information. Furthermore, the security of the MAC ensures that the
adversary cannot cause the legitimate parties to accept any ciphertext (and so any message) that
was not generated by them. The combination of encryption and authentication in this way yields
so-called secure channels, that provide both authenticity and privacy. For more information on this
topic (and a formal proof that encrypt-then-authenticate yields the desired result), see [13].
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Independent keys. We conclude by stressing a basic principle of security and cryptography:
different security goals should always use different keys.1 That is, if an encryption scheme and a
message authentication scheme are both needed, then independent keys should be used for each one.
In order to illustrate this here, consider what happens to the encrypt-then-authenticate methodology
when the same key k is used both for the encryption scheme E and for the message-authentication
code MAC. We provide a concrete example using pseudorandom-function based encryption and
a pseudorandom-function based MAC. That is, let f be a pseudorandom permutation. Then, it
follows that both f and f−1 are pseudorandom functions. Define: Ek(m) = fk(r,m) for a random
r ∈R {0, 1}n, and MACk(c) = f−1

k (c). Now, the combined encryption and authentication of a
message m with the same key k equals:

〈c = Ek(m),MACk(c)〉 = 〈fk(m, r), f−1
k (fk(m, r))〉 = 〈fk(m, r), (m, r)〉

Thus, the message m is revealed in the output.

8.2 CCA-Secure Encryption

Until now, we have seen two notions of secure encryption: eavesdropping security and chosen-
plaintext security. The third notion, called chosen-ciphertext security, is more stringent than the
previous two. Specifically, the adversary’s power is extended by giving it access to a decryption
oracle as well as an encryption oracle. Apart from this, the definition is the same as for CPA-
security. That is, the adversary is given access to an encryption and decryption oracle. At some
stage, it outputs a pair m0,m1 and it is then given an encryption c of one of the two messages.
The adversary’s aim is to guess if c is an encryption of m0 or m1. We note that the adversary may
continue using the decryption oracle after it receives c, and is allowed to ask for the decryption of
any ciphertext other than c. (Otherwise, security clearly cannot be achieved.)

Chosen-ciphertext security seems very strong. However, it models attacks where an adversary
may obtain some information about plaintexts from ciphertexts. For example, in real life, it is
possible for an adversary to know whether a ciphertext is valid or invalid (for example, by seeing if
a server outputs an error message). Furthermore, such information is sometimes enough to execute
a successful attack on CPA-secure schemes. Another setting where chosen-ciphertext security may
be needed is in the case that a server would behave differently, depending on what type of message
it receives. If this behaviour is observable to an outside attacker, then it can learn something about
the message that is encrypted by presenting the server with a ciphertext. Any encryption scheme
that is secure against a chosen-ciphertext attack is secure in these settings. It is therefore often
important to use schemes that achieve this level of security.

The CCA indistinguishability game Exptcca. A random key is chosen k ← K and the adver-
sary A is then given oracle access to the encryption and decryption algorithms Ek(·) and Dk(·). At
some stage, the algorithm A outputs a pair of message m0,m1. A bit b ∈R {0, 1} is then randomly
chosen and A is given c = Ek(mb). Adversary A continues to have oracle access to both Ek(·) and
Dk(·); however only queries c′ 6= c are answered by Dk(·). Finally, A outputs a bit b′. We say that
A succeeded if b′ = b and in such a case we write Exptcca(A) = 1.

1We note that it is sometimes possible to use the same key for different goals; however, an explicit proof is needed
for such cases.
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Definition 8.1 An encryption scheme E is (t, ε)-indistinguishable under chosen-ciphertext attacks
(CCA secure) if for every adversary A that runs for at most t steps,

Pr[Exptcca(A) = 1] <
1
2

+ ε

We note that this definition is actually for that of adaptive chosen-ciphertext attacks, typically
denoted CCA2.

Achieving CCA-secure encryption. In order to achieve CCA-security, we will construct an
encryption scheme with the property that the adversary will not be able to obtain any valid
ciphertext that was not generated by the legitimate parties. This will have the effect that the
decryption oracle will be rendered useless. The scheme that we will use is exactly the encrypt-
then-authenticate scheme discussed above, except that we will assume that the MAC scheme has
unique tags. That is, the MAC algorithm is deterministic. (We note that different requirements
can be added to the MAC so that the theorem will hold, but this suffices for us here.) We have the
following theorem:

Theorem 8.2 Let E be a CPA-secure encryption scheme and let MAC be a secure message au-
thentication code with unique tags. Then, E′

k1,k2
(m) = 〈c,MACk2(c)〉, where c = Ek1(m), is a

CCA-secure encryption scheme.

The idea behind the proof of this theorem is as follows. Since MAC is a secure message authentica-
tion code, we can assume that all queries to the decryption oracle return invalid, unless the queried
ciphertext was previously obtained by the adversary querying the encryption oracle. Therefore,
the security of E′ is reduced to the CPA-security of E (because the decryption oracle is effectively
useless).

In the above theorem statement, we have not include the parameters t and ε. We leave the
computation of these parameters and a proof of the theorem as an advanced exercise. (I will be
happy to help any student who wishes to attempt this by him or herself.)

Secure channels versus CCA-security. We note that although we use the same construction
for achieving CCA-security and combining privacy and encryption, the security goals in both cases
are different. Namely, here we are not necessarily interested in obtaining authentication. Rather,
we wish to ensure privacy even in a strong adversarial setting where the adversary is able to obtain
some information about a plaintext from a given ciphertext.

This difference becomes much clearer in the public-key world (see later lectures). In particular,
CCA-security can be achieved in a setting where only the receiver has a public key, whereas secure
channels requires that both the sender and receiver have public keys.

8.3 Key Management

In this section, we discuss issues relating to the management of private keys. Until now, we have
seen that the security goals of privacy and authentication can be achieved, assuming that the
communicating parties share a secret key. The first question that must be dealt with here is how
do the parties obtain such a shared secret key to begin with. In a closed environment (like the
military, intelligence agencies etc.) it is possible for the parties to physically meet and share the
key. However, this does not work in open systems like the Internet. This raises a problem that,
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unfortunately, does not have a solution within the private-key world. Next week, we will begin
studying the topic of public-key cryptography, which addresses this exact issue.

Assume for now, that it is possible for parties to somehow obtain initial secret keys. Even in
this case, an important issue that must be dealt with is how to manage such keys. First, such keys
must be kept in secure databases (so that adversaries cannot read them). Furthermore, they must
be refreshed at reasonable intervals (so that if the security is at some stage compromised, this can
be limited to the interval in question). These requirements mean that having a large number of
different keys is very problematic. However, if n parties wish to communicate with each other, then
each party needs to hold n− 1 keys (and overall there need to be n(n− 1)/2 different secret keys
in the system). For n = 1, 000 this is already a huge amount. We will therefore briefly discuss how
to reduce the number of keys needed.

Key distribution centers and session-key generation. The main idea is to have the parties
interact via a key distribution center (KDC) in order to set up a session-key. More specifically, all
parties share a secret key with the KDC (so each party holds one secret key and the KDC holds
n secret keys). Then, in order for parties A and B to communicate, they ask for “help” from the
KDC. At the conclusion of their interaction with the KDC and with each other, they will obtain
a shared secret key that is used only for the current interaction (or session). This key is called a
session key.

The basic idea can be thought of as follows. If A wishes to communicate with B, it sends
a request (A,B, key) to the KDC. The KDC then chooses a random session-key sk and sends
(A,B, EkA

(sk)) to A and (A,B, EkB
(sk)) to B, where kA and kB are A and B’s respective secret

keys that are shared with the KDC. Notice that only A and B can decrypt sk and so they can use
this as a secret key to communicate.

We stress that, although this sounds very simple, there are a number of delicate issues that
arise. Due to lack of time, we will not be able to present these schemes. However, it is highly
recommended to at least read pages 127–132 in [36]. Note that the Kerberos system, presented
on page 132 is widely implemented (including as the basis of the shared-secret logon protocol in
Windows 2000 and later). For more information on Kerberos, see [23].

Choosing keys. We stress that keys must be chosen at random. Different methods exist for
generating random coin tosses. First, it is possible to purchase computers today that have hardware-
based random bit generators. Other methods include users typing random noise or moving the
mouse around at random. We warn that using a memorizable password as a key is very dangerous
and should be avoided wherever possible.
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Lecture 9

Public-Key (Asymmetric)
Cryptography

9.1 Motivation

One of the central aims of public-key cryptography is to solve the problem of key agreement or
distribution. In the private-key world, encryption and authentication can only be carried out if the
communication parties can somehow obtain the same, uniformly distributed keys. There are many
applications in which such key distribution is feasible; however, there are also many in which it is
not. For example, almost all electronic commerce between vendors and customers over the Internet
would not be possible if the customer had to physically obtain a secret key from the vendor. This
issue led Diffie and Hellman to essentially revolutionize the field of cryptography with the invention
of public-key cryptography in 1976 [18]. We strongly recommend reading the original paper of Diffie
and Hellman (it can be found online easily). The basic idea is that some operations are inherently
asymmetric. In particular, everyone should be able to send me a letter, but only I should be
able to open and read my mail. Furthermore, there are mathematical operations that are also
asymmetric. For example, it is easy to multiply two large (e.g., 1024 bit) prime numbers together,
but no polynomial-time algorithm is known for inverting this process and finding the prime factors
of a large (e.g., 1024 bit) number n that a is a multiple of two primes.

In a public-key encryption scheme, the encryption and decryption keys are not the same. Rather,
the encryption key is made public, enabling everyone to encrypt messages. However, the crucial
point is that knowing this encryption key does not make it possible to decrypt ciphertexts. This
capability is left only to the legitimate receiver who has the decryption key. This makes it possible
for parties to publish their public-keys so that everyone can communicate privately with them. We
stress that this distribution is also not trivial, and we will discuss later how this should be done.

Other important public-key tasks that we will consider are digital signatures and key agreement.
In the setting of digital signatures, there are distinct signing and verification keys with the property
that anyone can verify the validity of a signature, but only the legitimate signer can sign. (This is
in contrast to message authentication codes where the application of the code and its verification
used the same key.) Likewise, the public-key version of key agreement enables parties to use
public/private key pairs in order to agree on a shared secret key.

* Lecture notes for an undergraduate course in cryptography. Yehuda Lindell, Bar-Ilan University, Israel, 2005.
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Advantages and disadvantages of public-key cryptography. Some of the advantages of
using public-key cryptography are that key distribution becomes much easier (but again, as we
have mentioned, still remains non-trivial), less keys need to be stored (it suffices for every party to
have a single key), and other parties’ public keys may be kept in public, but reliable, storage (that
is, each party needs only to keep its own personal private key in secure storage).

We also note one disadvantage of public-key cryptography: all known schemes are far slower
than their equivalent in the private-key world. For this reason, “hybrid” schemes are often used
that combine between public and private-key encryption (e.g., first a symmetric key is encrypted
using the public-key, and then the message is encrypted with the symmetric key).

9.2 Public-Key Problems and Mathematical Background

As we have mentioned, the technical heart of public-key cryptography is the fact that some mathe-
matical operations seem to be inherently asymmetric. More specifically, there exist functions that
can be efficiently computed, but for which inversion seems to be hard (i.e., no polynomial-time
inversion algorithms are known to exist). We will present some of the most famous of these prob-
lems here. Our focus here is not on the mathematical technicalities in these functions and we will
therefore skip many important details. These details can be found in many cryptographic texts; in
particular, we recommend [25] and [35]. We also assume knowledge of basic algebra and number
theory like modular arithmetic.1

The Discrete-Logarithm problem (DL). Let p be an n-bit prime, and let g be a generator
of the cyclic group G defined over {1, . . . , p− 1} with the group operation of multiplication. (That
is, g is a value such that for every a ∈ {1, . . . , p− 1} there exists a unique value b ∈ {1, . . . , p− 1}
such that a = gbmod p. We note that such a generator always exists and it can be efficiently found
given the factorization of p− 1.)

The discrete-log problem is: given a prime p, a generator g and a random value a ∈ G, find
a value b ∈ G such that gb = a mod p (b is called the discrete-log of a in base g). The discrete-
log assumption is that for random n-bit primes p (for large enough n), it is infeasible to solve
the discrete-log problem (i.e., it is assumed that there does not exist a polynomial-time algorithm
that solves this problem). We note that the best known algorithm today runs in approximately
O

(
e

3
√

n log n
)

time. So, taking t to be significantly less than this time, we can set ε to be somewhere
in the region of 2−n for a concrete hardness assumption. Note that n should be greater than or
equal to 1024, and for high-security applications it is wise to set n = 2048. In order to parameterize
the assumption, we say that the DL problem is (t, ε)-hard if every algorithm running for at most t
steps can succeed in solving the problem with probability at most ε. This same parameterization
can be used for all the problems described below.

Note that it is easy to compute a = gbmod p given the tuple (p, g, b). The hard part is to invert
this operation and compute b from (p, g, a). We also note that a does not “hide all information”
about b. In fact, it is possible to efficiently compute the least significant bit of b from (p, g, a).
However, it can be shown that computing the most significant bit of b from (p, g, a) is “as hard as”
computing b itself.

1Just to be safe, we say that x ≡ y mod n iff x and y have the same remainder when divided by n. In other words,
x ≡ y mod n iff n divides x− y.
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The Computational and Decisional Diffie-Hellman problems [18]. The Diffie-Hellman
problem is based on the hardness of the computing the discrete log. The computational Diffie-
Hellman (CDH) assumption is the following:

Given a random n-bit prime p (for large enough n), a generator g of G and a pair
(gamod p, gbmod p) where a, b ∈R G, it is hard to compute gabmod p.

The only way that we know how to compute gabmod p today is to first compute the discrete log of
gamod p thereby obtaining a, and then compute gabmod p = (gbmod p)amod p. This shows that the
Discrete-Log problem is at least as hard as the Diffie-Hellman problem (i.e., any solution to DL
also solves CDH); the reverse direction is not known.

The CDH assumption is related to the difficulty of computing gab. The decisional Diffie-Hellman
(DDH) assumption relates to the difficulty of knowing if a value α equals gab or equals gc for some
random c. That is:

For large enough random n-bit primes p, it is hard to distinguish tuples of the form
(p, g, gamod p, gbmod p, gabmod p) from tuples of the form (p, g, gamod p, gbmod p, gcmod p)
where a, b, c ∈R G.

The DDH assumption seems significantly stronger than the CDH and DL assumptions (as above,
a solution to DL or CDH clearly solves DDH, but the reverse is unknown). We note that there are
groups where DDH is known to be easy but CDH is still assumed to be hard. See [10] for a survey
on the DDH assumption.

Factoring, Rabin and RSA. Let p and q be large random n-bit primes. Then, computing N =
pq is easy, but the best known algorithm for computing p and q from N runs in time approximately
O

(
e

3
√

n log n
)
. The Rabin function [30] can be informally defined by f(x) = x2modN . The important

point about the Rabin function is that it is equivalent to factoring. That is, it is possible to invert
the function if and only if it is possible to factor N into its prime factors p and q.

The RSA function [32] is defined as follows. Let p, q and N be as above. Euler’s function ϕ(N)
is defined as the number of values b in {0, . . . , N − 1} that are co-prime to N (i.e., gcd(b,N) = 1).
Then, for N = pq, we have that ϕ(N) = (p− 1)(q− 1). Now, a random value e is chosen between 1
and ϕ(N) such that e is co-prime to ϕ(N) (i.e., gcd(e, ϕ(N)) = 1). Finally, the inverse d of e modulo
N is computed: i.e., d is such that e · d = 1 modϕ(N). The RSA function is fe,N (x) = xemodN .
Note that for y = fe,N (x), it is possible to compute the inverse by

yd ≡ xed ≡ x1+cϕ(N) ≡ x ·
(
xϕ(N)

)c ≡ x modN

where the last equivalence is due to Euler’s generalization of Fermat’s little theorem that states
that if gcd(a,N) = 1 then aϕ(N) ≡ 1 modN .

9.3 Diffie-Hellman Key Agreement [18]

The key agreement problem is how to establish a secret key over a public channel. In order to
illustrate this, consider the following protocol that uses two-lock boxes (i.e., boxes that can be
locked independently with two padlocks) and the postal service. Alice takes a two-lock box, places
the secret key k inside the box, locks it with her padlock and sends it to Bob. Bob receives the
box, places his padlock on the box and returns it to Alice. Alice removes her padlock and sends
it once again to Bob. Bob now removes his padlock and obtains the key k. Notice that only Alice
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and Bob can obtain the key k, as long as no party can intercept the boxes and impersonate Bob to
Alice. This idea is the basis of the Diffie-Hellman key agreement protocol.

Initially, the parties have an agreed-upon prime p and generator g (this information is public).
The protocol works as follows:

1. Alice chooses a random a ∈ G, computes x = gamod p and sends x to Bob.

2. Bob chooses a random b ∈ G, computes y = gbmod p and sends y to Alice.

3. Alice and Bob both compute gabmod p and set this to be their secret key.

Note that assuming that no party modifies their message en route, the security of this protocol
follows from the decisional Diffie-Hellman assumption. This is due to the fact that given gamod p
and gbmod p, the DDH assumption states that the secret key gabmod p is indistinguishable from
gcmod p where c ∈R G (and so this latter key truly is random).

It is important to stress here that if the communication channel between Alice and Bob is not
reliable (i.e., it is possible for an adversary to modify messages being sent), then it is possible to
completely break the above protocol. Namely, the adversary can simply compute y′ = gb′mod p and
x′ = ga′mod p and replace Alice’s message to Bob with x′ and Bob’s reply to Alice with y′. The
result is that Alice will conclude with a key gab′mod p, Bob will conclude with a key ga′bmod p, and
the adversary will know them both. This is called a man-in-the-middle attack and will be discussed
in more detail later.

Diffie-Hellman with authenticated keys. Consider the case that there is a reliable and trusted
database that holds pairs of the form (Alice, gamod p), where it is verified that gamod p is indeed
Alice’s key. Furthermore, it is assumed that it is possible to obtain values from the database without
adversarial interference. Then, if Bob wishes to communicate with Alice it can look up Alice’s key
in the database and then use the key k = gabmod p where (Bob, gbmod p) is its own entry in the
database. Since these keys are verified, or “authenticated”, this ensures secure communication
between Alice and Bob. We note that in practice, Alice and Bob will not actually use k, but will
rather generate a fresh session key every time that they wish to communicate.



Lecture 10

Public-Key (Asymmetric) Encryption

As we have mentioned in the previous lecture, the main idea behind public-key encryption is to
split the key into two distinct parts: the public encryption key and the secret decryption key. The
security of the encryption scheme is formalized in an almost identical way as in the private-key
world, except that the adversary is also given the public encryption key. Notice that this means
that by default, a chosen-plaintext attack can always be carried out (since the adversary knows the
encryption key, it can encrypt any message that it wishes).

10.1 Definition of Security

The syntax. An encryption scheme is a tuple of algorithms (G,E,D) such that G is a probabilis-
tic algorithm that generates keys, E is the encryption algorithm and D is the decryption algorithm.
Unlike the case of private-key encryption, we cannot assume that the keys are just uniformly dis-
tributed strings. Rather, G receives a parameter 1n (that indicates in unary the length of the keys
to be generated), and outputs a pair of keys (pk, sk). The encryption algorithm E receives the
public-key pk and a plaintext message, and generates a ciphertext. The decryption algorithm D
receives the secret-key sk and a ciphertext, and outputs a plaintext. We require that, except with
negligible probability over the choice of the keys, it holds that for every x, Dsk(Epk(x)) = x.

For the sake of completeness, we repeat the definition of security under chosen-plaintext attack:

The Public-Key CPA indistinguishability game ExptPub
cpa . A random pair of keys is chosen

(pk, sk) ← G(1n) and the adversary A is given the public-key pk. Next, the algorithm A outputs
a pair of message m0,m1 of the same length. A bit b ∈R {0, 1} is then randomly chosen and A is
given c = Epk(mb) (this value is called the challenge ciphertext). Following this, A outputs a bit b′.
We say that A succeeded if b′ = b and in such a case we write ExptPub

cpa (A) = 1.

Definition 10.1 A public-key encryption scheme E is (t, ε)-indistinguishable under chosen-plaintext
attacks (CPA secure) if for every adversary A that runs for at most t steps,

Pr[ExptPub
cpa (A) = 1] <

1
2

+ ε

As for private-key encryption, a secure public-key encryption scheme must be probabilistic. Oth-
erwise, it is possible for the adversary to just compute Epk(m0) and Epk(m1) by itself and compare

* Lecture notes for an undergraduate course in cryptography. Yehuda Lindell, Bar-Ilan University, Israel, 2005.
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the result to the challenge ciphertext. Note that unlike in the private-key setting, there is no need
for any oracle in order to carry out this attack. The analogous definition of chosen-ciphertext
security for public-key schemes is left for an exercise.

10.2 The El-Gamal Encryption Scheme [19]

This encryption scheme is based on the Decisional Diffie-Hellman assumption (DDH) and is a direct
extension of the Diffie-Hellman key-exchange protocol.

The Scheme:

1. Key Generation G: choose a group G in which it is assumed that the DDH problem is hard,
and choose a generator g for G. Choose a value a ∈R G, compute h = ga and output the
public-key pk = (〈G〉, g, h), where 〈G〉 is a (short) description of G. Output the secret-key
sk = (〈G〉, g, a). (Note that all operations here and below are in the group G.)

2. Encryption: Given pk = (〈G〉, g, h) and a message m ∈ G (i.e., the message m is encoded as
an element of G), choose r ∈R G, compute v = gr, w = hr ·m and output c = (v, w).

3. Decryption: Given sk = (〈G〉, g, a) and c = (v, w), compute m = w/va.

First, notice that decryption always works. That is, for (v, w) that is correctly computed, it holds
that va = gra = (ga)r = hr. Therefore, w/va = (hr · m)/hr = m. As we have mentioned, this
encryption scheme is a direct extension of the Diffie-Hellman key-exchange protocol. In order to
see this, set v = gr to be “A’s message” and h = ga to be “B’s message” in the Diffie-Hellman
protocol. Then, the key that is generated from the protocol equals gar = hr, which is exactly the
“secret key” used by the sender to mask the message m. Finally, we remark that encryption here
is probabilistic, and two encryptions of the same message look completely different (because the
masking value r is completely different every time).

We now prove that the security of the El-Gamal encryption scheme reduces directly to the DDH
assumption.

Theorem 10.2 Assume that the DDH problem is (t, ε)-hard. Then, the El-Gamal encryption
scheme is (O(t), ε)-indistinguishable under a chosen-plaintext attack.

Proof: Assume by contradiction that there exists an adversary A that runs in time O(t) and
succeeds in the public-key CPA-experiment for El-Gamal with probability greater than or equal to
1/2 + ε. We construct a distinguisher D for the DDH problem.

The distinguisher D is given a tuple (〈G〉, g, ga, gb, α) where α = gab if the tuple is of the Diffie-
Hellman type, and α = gc otherwise (recall, a, b, c ∈R G). D sets pk = (〈G〉, g, h) where h = ga (i.e.,
h is the third term in D’s input tuple). Then, D invokes the adversary A with the key pk. When
A outputs two messages (m0,m1), the distinguisher D chooses β ∈R {0, 1}, sets v = gb (i.e., v is
the fourth term in D’s input tuple) and w = α ·mβ. D then hands A the ciphertext c = (v, w). If
A outputs β′ = β, then D outputs 1 (i.e., the input was a DH tuple); otherwise, D outputs 0 (i.e.,
the input was not a DH tuple).

Now, if D received a DH tuple and so α = gab = hb, then the ciphertext generated by D is
correct. That is, v = gb and w = hb · m (since b ∈R G, this is the same as ordinary El-Gamal
encryption). Therefore, by the contradicting assumption, A outputs β′ = β with probability that
is greater than or equal to 1/2 + ε.
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In contrast, if D received a non-DH tuple and so α = gc for c ∈R G, then w = gc ·mβ. Therefore,
the value β is perfectly hidden by w. (Notice that w is an encryption of m0 if and only if c is such
that gc = w/m0, and w is an encryption of m1 if and only if c is such that gc = w/m1. Since g
is a generator, and c ∈R G, both of these possible choices of c occur with the same probability.
Therefore, we have “perfect secrecy” here.) Thus, by an information-theoretic argument, it holds
that A outputs β′ = β with probability at most 1/2.

We conclude that:
∣∣∣Pr[D(〈G〉, g, ga, gb, gab) = 1]− Pr[D(〈G〉, g, ga, gb, gc) = 1]

∣∣∣ ≥ 1
2

+ ε− 1
2

= ε

and so D solves the DDH problem with probability greater than or equal to ε. Assuming that t
is significantly larger than the overhead of D (which essentially involves one multiplication) and
setting A’s running-time to t/2, we have that D runs in time t. Thus, D contradicts the (t, ε)
hardness assumption on the DDH problem. This completes the proof.

CCA security. We remark that the El-Gamal encryption scheme is not CCA-secure. Namely,
upon receiving the challenge ciphertext c = (v = gr, w = hrmb), it is possible for the adversary to
request a decryption of (v, 2 · w). The plaintext that is returned equals 2 · mb, and so it is easy
to tell if the ciphertext m0 or m1 was encrypted. This also shows that the El-Gamal encryption
scheme is easily malleable (see Exercise 4).

A CCA-secure encryption scheme that is based on the DDH assumption was presented by
Cramer and Shoup in [14]. This is the most efficient CCA-secure encryption scheme that is known
to date.

10.3 RSA Encryption

The RSA encryption scheme is the most popular algorithm used in practice. Last week, we saw
how the basic RSA function works. To recap:

The Plain RSA Scheme:

1. Key Generation G: upon input 1n, choose two random primes of length n/2 and compute
N = pq. Choose e such that gcd(e, ϕ(N)) = 1. Find d such that ed ≡ 1 modϕ(N). Output
pk = (e,N) and sk = (d,N).

2. Encryption: Given pk = (e, N) and a message m ∈ {1, . . . , N − 1}, compute and output
c = xe modN .

3. Decryption: Given sk = (d,N) and c, compute m = cd modN .

Recall that last week we saw that decryption works. The first important observation about the
above-described scheme is the following:

Claim 10.3 Plain RSA is not indistinguishable under a CPA-attack.

This trivially follows from the fact that encryption is deterministic.
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RSA with random padding. The typical way of encrypting with RSA is to add “enough”
random padding after the message. The PKCS #1 standard (version 1.5) employs the following
method:

1. Key generation: as with plain RSA.

2. Encryption: Let m be the message to be encrypted. The message m is padded as follows.
The first (i.e., most significant) two bytes equal 0002 (in hexadecimal), the next series of at
least 8 bytes are random, the next byte is 00, and finally the message is written in the least
significant portion. This padded value is then encrypted as in plain RSA.

3. Decryption: as with plain RSA, followed by the removal of the padding.

We note that there is no security analysis of this this padding method. Nevertheless, it is widely
used and believed to be secure under a chosen-plaintext attack. Importantly, it was shown by
Bleichenbacher in [8] that the PKCS #1 standard (v. 1.5) is not secure under a chosen-ciphertext
attack, or even under an attack where the only information provided is whether the padding of
the ciphertext is correctly formatted. This attack by Bleichenbacher is very important in that it
demonstrates that in many setting, CPA-security does not suffice.

In order to achieve CCA-security for RSA encryption, a padding method called OAEP (Optimal
Asymmetric Encryption Padding) is used [6]. The security of the scheme relies on the random oracle
methodology (see Lecture 6) and is therefore heuristic. Due to lack of time, we do not describe
the scheme. We remark that the new PKCS #1 standard (version 2.0) uses OAEP encryption. In
practice, if RSA encryption is to be used, this seems to be the best methodology available today.

Provably secure RSA. There exist constructions of secure public-key encryption that can be
provably reduced to the RSA problem. Unfortunately, these schemes are less efficient than heuristic
ones, and are therefore not used. We will learn more about provably-secure constructions in the
course “Foundations of Cryptography” (89-856) in the next semester.

Implementation issues. RSA encryption and decryption is relatively slow. However, a number
of optimizations exist that can significantly speed up the computation. For example, using the
Chinese Remainder Theorem, it is possible to carry out most of the computation modulo p and q,
and only then combine the results to obtain the computation modulo N = pq.

10.4 Security of RSA

The RSA function (and encryption scheme) has withstood 25 years of scrutiny and the only known
way of “breaking” RSA (when encryption is carried out properly) is by factoring the modulus.
Since we believe that factoring is hard, we may conclude that RSA is secure. However, we stress
that there is no proof of this fact, and it is unknown whether or not the RSA assumption can be
proven under the assumption that factoring is hard. Nevertheless, there are some tasks related to
breaking RSA that can be proven to be equivalent to the problem of factoring.

Computing ϕ(N) from (e,N). Assume that we are given N and ϕ(N). Then, it follows that
we have two equations with two unknowns p and q:

N = pq

ϕ(N) = (p− 1)(q − 1) = N − p− q + 1
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These equations can be solved by substituting q = N/p into the second equation, yielding:

ϕ(N)−N + p +
N

p
− 1 = 0

Multiplying both sides by p and re-arranging the terms, we obtain a quadratic equation in the
unknown value p:

0 = p2 − (N − ϕ(N) + 1)p + N = 0

The two roots of the above polynomial will be the two factors of N . Therefore, using the standard
equation for finding the roots of a quadratic polynomial, we can obtain the factors p and q of the
modulus N . This demonstrates that finding ϕ(N) is no easier than factoring N (in particular, if
one can find ϕ(N), then using the above algorithm it is possible to go one step further and find p
and q).

Private-key recovery and factoring. Next, we will show that the problem of finding the RSA
secret-key d given the public-key (e,N) is equivalent to the problem of factoring N into its prime
factors. We stress that this should not be interpreted as meaning that RSA is secure as long as
factoring is hard. Rather, it just means that in such a case, it is hard to recover the secret-key. This
is a very different statement, because it may be possible to learn information about a plaintext (or
even fully decrypt) without ever knowing the secret-key.

Fact 10.4 Let (N, e) be an RSA public key. There exists an efficient algorithm that receives the
public and private keys (e,N) and d, and factors the modulus N . In addition, there exists an
efficient algorithm that receives e and the factorization of N , and outputs d.

Proof: We will only present the proof of a simplified case where e = 3. That is, we show that
given (N, e, d) where e = 3 it is possible to efficiently find the prime factors p and q of N . Recall
that N = pq and ed ≡ 1 modϕ(N) where ϕ(N) = (p−1)(q−1). Therefore, ed−1 = c(p−1)(q−1)
for some constant c. Now, since 1 ≤ e ≤ 3 and 1 ≤ d ≤ (p − 1)(q − 1), we have that 1 ≤ c ≤ 3.
Assume that we know the exact value of c (we can just try for each of the 3 possibilities). We then
have the following equation: p + q = N + 1− (ed− 1)/c; denote s = N + 1− (ed− 1)/c. Define the
following polynomial f(x) = (x−p)(x−q) = x2−sx+N . Notice that s and N are known to us, and
therefore we can fully define this polynomial. Furthermore, p and q are roots of the polynomial, so
finding the roots gives us the factors of N . (Of course, finding roots is straightforward, using the
standard equation.) The general case (for any e) is a bit more involved, and we will not present it
here.

The “in addition” part of the fact follows immediately from the fact that given p and q, simply
compute ϕ(N) = (p− 1)(q − 1) and find e−1 modϕ(N).

10.5 Hybrid Encryption

Due to the fact that public-key encryption is computationally expensive, when long messages are to
be encrypted, a hybrid between public and private key encryption is used. That is, first a random
symmetric key K is encrypted using a public-key encryption scheme. Then, the long message is
encrypted using a highly efficient private-key encryption scheme, with key K.
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Lecture 11

Attacks on RSA

In this lecture, we will describe a number of attacks on RSA that are known. All of these attacks
can easily be avoided. However, studying them increases our understanding of the RSA algorithm
and its security. It also demonstrates that it is not a good idea to implement RSA yourself without
first understanding all of the possible issues involved. In addition, if you do implement it yourself,
take care to follow the exact specification. We note that we cover only some of the known attacks.
We refer the interested student to [9] for a survey of attacks on RSA.

11.1 Private and Public-Key Reversal

Notice that in RSA encryption is fast (because one can choose e in any way desired, and in particular
such that e is small), but decryption is slow (because d must just be the inverse of e modulo ϕ(N)).
In the case of a server carrying out many decryptions, we would prefer the reverse. One may be
tempted to therefore first take d to be small, and then find e such that e · d ≡ 1 modϕ(N). and
such that d is small (thereby making decryption faster).

The above “optimization” makes it trivial to recover d given the public-key (e,N). In particular,
given that it is known that d is small (e.g., d ≤ 65, 537), it is possible to simply try all possible d’s,
and check for each one whether or not it is correct.

11.2 Textbook RSA

We have already shown that plain RSA is not secure, by the fact that it is deterministic. One may
be tempted to claim that indistinguishability, as we have defined it, is necessary for encrypting
regular messages that may not have inherent randomness. However, if RSA is used for encrypting
a random symmetric key K (as in hybrid encryption; see Section 10.5), then plain RSA should
suffice. Notice that in such a case, a different K is used for every encryption. Furthermore, since
the key-space is large, it is not possible to decrypt by computing Ke modN for all possible K’s
and comparing the result to the ciphertext.

We now show that the above claim is false. In particular, we show that with good probability,
a 64-bit encrypted key can be “extracted” from an RSA ciphertext in time approximately 240. Let
K ∈R {0, 1}64 (i.e., K ≈ 264) and let c = Ke modN . Suppose now that K = K1 · K2 where

* Lecture notes for an undergraduate course in cryptography. Yehuda Lindell, Bar-Ilan University, Israel, 2005. We
note that this lecture was skipped in 2004-05; its current format is therefore tentative.
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K1,K2 < 234; this holds about 18% of the time (to see why this holds, and a full description of
this attack, see [11]). If this holds, then we have that c/Ke

1 = Ke
2 modN .

Now, build a table (1, c/1e), (2, c/2e), (3, c/3e), . . . , (234, c/234e) containing 234 pairs and sort it
by the second element. Then, for each possible value of K2, check if Ke

2 is in the table (i.e., is
a second element in a pair). If yes, then we have found K1 and K2. Specifically, we have K2

and a pair (K1,K
e
2) = (K1, c/Ke

1). The time that it takes to carry out this computation and find
K = K1 · K2 is 234 + 23434 ≈ 240, which is much smaller than 264 (and is small enough to be
feasible).

11.3 Common Modulus Attack

This attack is due to a negligent use of RSA. Specifically, Assume that a number of parties wish to
all use the same RSA modulus N = pq, where every party has a different encryption and decryption
exponent e and d. That is, let P1, . . . , Pk be k different parties and let (ei, N) and (di, N) be the
respective public and private keys for party Pi.

The first observation here is that party Pi can decrypt the messages of party Pj for all j. This
follows from Fact 10.4. Specifically, given (ei, N) and di, party Pi can factor N into p and q. Then,
given p and q, it can compute ϕ(N) and then dj for all j (it can do this because ej is public and
known and all that is needed is to compute dj = e−1

j modϕ(N).

Sharing a modulus between trusting parties. Above we have shown that all parties sharing
the same modulus can decrypt each other’s messages. This still leaves the possibility that a shared
modulus can be used in the case of mutually trusting parties. (Of course, in such a case, they may
as well just use the same public key. Here we will see what happens if they do not.)

Let P1 and P2 be two parties with respective public keys (e1, N) and (e2, N), and assume
that a party sends the same encrypted message to both parties. That is, the adversary sees
c1 = me1 modN and c1 = me1 modN . Given these ciphertexts, the adversary can compute

t1 = e−1
1 mod e2

t2 = (t1e1 − 1)/e2

(The inverse of e1 modulo e2 can be found efficiently using the extended Euclidean algorithm.)
Now, given these values it is possible to compute m as follows:

ct1
1 · c−t2

2 = me1t1 ·m−e2t2

= m1+e2t2m−e2t2

= m1+e2t2−e2t2

= m

It is therefore “more secure” for all parties to use the same public-key, than for them to use a
shared modulus.

11.4 Simplified Broadcast Attack

Assume a party wishes to encrypt a message m and send it to a number of parties P1, . . . , Pk with
respective public keys (e1, N1), . . . , (ek, Nk). Assume also that m < Ni for every i (i.e., m is a
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message that fits into a single application of RSA for encryption). A naive way of carrying out this
encryption is to simply compute ci = mei modNi for every i, and then send out c1, . . . , ck.

Now, assume that there are at least 3 public exponents ei that are equal to 3; without loss of
generality, let them be e1 = e2 = e3 = 3. In this case, it is easy to recover m from c1, c2 and
c3. Specifically, an eavesdropper is given c1 = m3 mod N1, c2 = m3 modN2 and c3 = m3 modN3.
Then, assuming that all of N1, N2 and N3 are relatively prime (otherwise, it is possible to factor
them), it is possible to compute c = m3 modN1N2N3. (This computation is easy to carry out using
the Chinese remainder theorem.) Since m < Ni for all i, we have that c = m3 over the integers
(and not just modN1N2N3). Therefore, the cube root of c (over the integers) returns the original
message m.

This attack provides another reason why randomized encryption must be used (if each message
was padded with a different random pad, this attack would not be successful).

11.5 Timing Attacks

In order to describe this attack, we first need to explain how modular exponentiation is carried out.
In particular, we need to compute cd modN in order to decrypt. A naive algorithm that simply
runs in a loop d times would not finish in our lifetime (because it iterates in the order of 21024

times). Thus, exponentiation is carried out in a different way. In order to get an idea of how the
algorithm works, think about computing c2t

modN for some t. In this case, it is possible to use
the following algorithm, that is called repeated squaring:

1. Set x ← c

2. For i = 1 to t, compute x ← x2

3. Output x

In the general case, we use a similar idea. Let d = dtdt−1 · · · d0 be the binary representation of d
(e.g., t = 1024). Since d = 20d0 + 21d1 + . . . + 2tdt, we have that

cd modN =
n∏

i=0

c2idi modN

This leads us to the following algorithm:

1. Set x ← 1 and z ← c

2. For i = 0 to t do:

(a) If di = 1, set x ← x · z modN

(b) Set z ← z2

3. Output x

Notice that at stage i, if di = 0 then the value x is not modified. However, if di = 1, then we
multiply the previous result by c2i

. This is in line with the formula cd modN =
∏n

i=0 c2idi modN .
(Notice that in the beginning of iteration i, the value z equals z2i

.)
The timing attack of Kocher [20] uses the fact that when di = 1, an additional multiplication

takes place. Now, assume that an attacker holds a smartcard that decrypts (or equivalently,
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computes signatures). Then, the attacker asks it to decrypt a large number of random messages
c1, . . . , ck ∈R Z∗N and measures the time Ti that it takes to compute cd

i modN . These timing
measurements are now used to obtain d, one bit at a time. Since d is odd, we know that d0 = 1.
Regarding the second iteration (for d1), initially z = c2 modN and x = c. Thus, if d1 = 1, the
smartcard computes the product x · z = c · c2 modN ; otherwise, it does not. Let ti be the time
that it takes to compute ci · c2

i where ci is one of the random messages that was initially chosen
(this value can be computed using the smartcard or another one of the same type).

Kocher showed that the ensembles {ti} and {Ti} are correlated in the case that d1 = 1, but
behave independently in the case that d1 = 0. By measuring the correlation between these ensem-
bles, it is possible for the adversary to determine if d1 equals 1 or 0. Given d0 and d1, it is possible
to do the same thing for d2 and so on.

Defenses. Two known defenses are delaying and blinding. In a delaying defense, the smartcard
just ensures that every decryption takes a fixed amount of time that is independent of d. In a
blinding defense, the smartcard first chooses a random r and computes c′ = c · re modN . Then,
m′ = c′d modN is computed and finally m = m′/r mod N is given as the output. Blinding is
effective because the decryption process is applied to unknown values (whereas the fact that the
ci’s are known is crucial for the attack).

Extensions. Timing attacks were initially considered to be problematic for smartcard-type sce-
narios. However, it has been demonstrated that they can also be carried out against servers over
the Internet, or between processes on the same machine. Other attacks against smartcards, called
power attacks, are even more effective and cause a serious problem in implementations.
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Digital Signatures and Applications

Digital signatures are the analogue of message authentication codes in the public-key world. As
in public-key encryption, there are distinct signing and verification keys. Only the party who
knows the signing key can generate a valid signature, but anyone knowing the verification key can
check the validity of a signature. Thus, it is possible to verify the authenticity of a message by
checking whether or not the signature on the message is valid. This is crucial in many settings,
including for successful electronic commerce. In particular, the property needed is that of non-
repudiation, which means that the signer cannot later deny that he signed the document. Thus,
a signed order for products cannot later be denied, and must be paid for. Another extremely
important application of digital signatures that is in wide use today is that of digital certificates
for a public-key infrastructure. We will discuss this application more at the end of the lecture.

12.1 Definitions

The syntax. A signature scheme is a triple of algorithms (G,S, V ) as follows:

1. G is a key generation algorithm that receives 1n for input and returns a pair of keys (sk, vk)
of length n. The key sk is called the signing key and the key vk is called the verification key.

2. S is a signing algorithm that receives a key sk and a message m and outputs a signature
σ = S(sk,m). We will often write Ssk(m) instead of S(sk, m)

3. V is a verification algorithm that receives a key vk, a message m and a candidate signature
σ, and returns a bit b = V (vk,m, σ). As with S, we will often write Vvk(m,σ).

It is required that except with negligible probability over the choice of a key, for every message m
it holds that Vvk(m,Ssk(m)) = 1. We note that if the signing algorithm S receives only messages
of a fixed size (say, n), then we say that the signature scheme is fixed-length.

Security. As is to be expected, the security requirement of a signature scheme states that it
should be hard to forge signatures. This should hold even when the adversary A is given oracle
access to a signing oracle (this oracle represents valid signatures that A may obtain in a real
attack). As in the MAC experiment, in order for A to succeed, it must generate a valid signature
on a message that was not queried to the signing oracle. We define the following experiment:

* Lecture notes for an undergraduate course in cryptography. Yehuda Lindell, Bar-Ilan University, Israel, 2005.
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The signature game Exptsig. The generator G is run, outputting a key-pair (vk, sk). Then, A
is given vk and oracle access to the signing oracle S(sk, ·). At the conclusion of the experiment,
A outputs a pair (m∗, σ∗). Let Q be the set of oracle queries made by A. Then, we say that A
has succeeded, denoted Exptsig(A) = 1, if V (vk,m∗, σ∗) = 1 and m∗ 6∈ Q. That is, A outputs a
message along with a valid signature, and A did not query its oracle with this message. We are
now ready to present the definition of security for signature schemes:

Definition 12.1 A signature scheme (G, S, V ) is (t, ε) existentially secure against chosen-message
attacks (or just (t, ε)-secure) if for every adversary A that runs for at most t steps

Pr[Exptsig(A) = 1] < ε

Security here is called “existential” because it suffices to just come up with a forgery on any message,
and the attack is called “chosen-message” because the adversary has oracle access to the signing
algorithm and so can request signatures on any message that it chooses.

Notice that the security guarantee provided by digital signatures is far stronger than that of
regular handwritten ones. First, we known that handwritten signatures can be forged with some
expertise. Second, a handwritten signatures does not verify that the content of the document was
not somehow modified. In contrast, a digital signature scheme ensures that only the exact message
signed can be accepted. Of course, this is under the assumption that a party’s signing key is kept
secret.

Fixed-length versus variable-length signature schemes. We note that variable-length sig-
nature schemes can be obtained from fixed-length signature schemes in the same way as for
message authentication codes. Specifically, if (G,S, V ) is a fixed length scheme, then define
S′sk(m) = Ssk(h(m)), where h is a collision-resistant hash function (whose output is of the length
to be input to S). The proof that this yields a secure variable-length signature scheme is almost
identical to our proof of the analogous claim for message authentication codes. We remark that it
is actually possible to use a weaker type of hash function, called a universal one-way hash function.

12.2 Constructions

The basic idea behind many constructions of secure signature schemes is that, in some sense the
signature operation is very reminiscent of the decryption operation. That is, in the setting of digital
signatures, only the party knowing the secret key should be able to sign. Likewise, in the setting
of encryption, only the party knowing the secret key should be able to decrypt. Therefore, the
“private-key decryption operation” in encryption serves as a good starting point as the “signing
operation” for signatures. Likewise, the “public-key encryption operation” in encryption serves as
a good starting point as the “verification operation” for signatures. We stress that saying that one
signs by decrypting and verifies by encrypting is very misleading; such terminology (although very
popular) should not be used.

A naive implementation. In light of the above idea, let us consider the following scheme that
uses plain RSA. (Note that since we do not aim to hide the message being signed, our objections
to plain RSA in the context of encryption do not seem to be valid any more. Indeed, it is possible
to construct secure deterministic encryption schemes.)
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1. Key generation: let the verification key vk be the public RSA key (e,N) and let the signing
key sk be the secret RSA key (d,N).

2. Signing algorithm: upon input (d,N) and m, compute σ = md modN .

3. Verification: upon input (e, N) a pair (m,σ), compute σe modN and output 1 if and only if
the result equals m.

We call the above plain RSA signatures. This signature scheme is not secure. Specifically, given two
signatures (m1, σ1) and (m2, σ2), it is possible to compute σ1 ·σ2 modN and thereby obtain a valid
signature on the new message m1 ·m2 modN . This is due to the “multiplicative” property of RSA
(i.e., md

1 modN ·md
2 modN = (m1 ·m2)d modN).

Secure constructions. There are many different constructions of secure signature schemes. As
with encryption, these range from schemes that have formal proofs of security (with reductions to
assumptions like RSA, factoring and so on), to schemes that have proofs of security in the random-
oracle model, and finally to schemes that have no formal analysis at all (but are just believed to
be secure).

Due to lack of time, we will see only one construction here. This construction is called the full
domain hash and only has a proof of security in the random-oracle model. Nevertheless, given the
lack of time, this seems to be a good example to see.

RSA with a full domain hash (RSA-FDH). The basic idea here is that the multiplicative
attack on plain RSA is possible due to the fact that mdmodN has a simple structure that can
be utilized. In contrast, if signing is carried out by h(m)dmodN , then in order to carry out a
multiplicative attack as described above, it must be possible to find three values m, m1 and m2

such that h(m) = h(m1)·h(m2) modN (given these three values it is possible to multiply signatures
on m1 and m2 in order to obtain a signature on m). However, this seems to be a difficult task.
In order to prove this, we need to rely on the random-oracle modelling of hash functions. In this
model, it is assumed that the hash function is really an external oracle that holds a truly random
function. As we have mentioned, a hash function is no such thing. However, this heuristic seems
to be useful for gaining some confidence in the security of a scheme.

The actual construction is as follows:

1. Key generation algorithm G: run the RSA key generation algorithm, obtaining e, d and N .
Then, find a collision-resistant hash function h with range {1, . . . , N−1} (where this function
can also be appropriate for the random-oracle modelling). Finally, output sk = (d,N, h) and
vk = (e,N, h).

We note that the range of typical hash functions (like SHA-1) does not equal {1, . . . , N − 1}.
Nevertheless, it is possible to modify them appropriately; see [5] for details.

2. Signing algorithm S: given sk = (d,N, h) and m, compute σ = Ssk(m) = h(m)d modN .

3. Verification algorithm V : given vk = (e,N, h), m and σ, compute σe modN and compare the
result to h(m). Output 1 if and only if they are equal. In other words, define Vvk(m,σ) = 1
if and only if σe modN = h(m).

We have the following theorem (for the sake of simplicity, we state and prove the theorem informally
and without using concrete analysis).
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Theorem 12.2 Replace the function h in the RSA-FDH construction by a random oracle. Then, if
there exists a polynomial-time adversary A that can forge a signature with non-negligible probability,
then there exists a polynomial-time algorithm that can invert the RSA function.

Proof Sketch: The basic idea behind the proof here is that if it is possible to forge a signature,
then this involves computing xd modN for a random value x (the reason that x is random is
that x = h(m) and h is modelled as a random oracle). Therefore, computing such a signature is
equivalent to inverting RSA on a random point.

More formally, let A be a polynomial-time adversary that successfully generates a forgery
(m∗, σ∗) with non-negligible probability. Furthermore, let t be an upper bound on the number
of queries that A makes to the random oracle. Without loss of generality, we assume that every
query made by A to the signing oracle is first asked to the random oracle.

Let M be a machine that receives (e,N, y) where y ∈R {1, . . . , N − 1}, and attempts to find
x such that xe = y modN (i.e., M attempts to invert RSA on a random point). The machine M
invokes A with input vk = (e,N), chooses a random index i ∈ {1, . . . , t} and works as follows:

1. Random-oracle queries: The ith query mi that A makes to its random-oracle is answered with
the value y from M ’s input.1 All other queries mj are answered by choosing a random value
rj and replying with sj = re

j modN . (These values are chosen in this way in order to enable
M to properly answer a signing-oracle query for the message mj ; see below.)

2. Signing queries: Let m be a query that A asks to its signing oracle. If m = mi, then M
halts with output failure (because in this case m cannot be the message for which a forgery
is generated). If m = mj , then M replies with the value rj that was chosen for mj when it
was queried to the random oracle. (Recall that by our assumption, all queries to the signing
oracle are first queried to the random oracle.)

Let (m∗, σ∗) be A’s output. If m∗ was never queried to the random oracle, then the probability
that σ∗ is a valid signature is at most 1/N , which is negligible (this holds because without querying
m∗, the value of h(m∗) is uniformly distributed given A’s view). We therefore ignore this event.
We have the following three possible events:

1. m∗ = mj for some j 6= i: in this case, M outputs failure. (A forgery here is of no help in
inverting y.)

2. m∗ = mi but σ∗ is not a valid signature: here too, M outputs failure.

3. m∗ = mi and σ∗ is a valid signature: this implies that (σ∗)e = y modN and therefore σ∗ is
the inverse of y. In this case M has succeeded and so it outputs x = σ∗ and stops.

It remains to analyze the probability that M succeeds. Ignoring the negligible probability that A
generates a successful forgery for m∗ without querying m∗ to the random oracle, we have that M
succeeds with probability ε/t where ε is the probability that A generates a successful forgery. This
holds because M chooses the index i for which A generates the forgery with probability 1/t. Thus,
success is achieved with probability ε · 1/t. Since A is polynomial, so is t. Therefore, the success of
M is non-negligible.

1The hope is that A will attempt to forge a signature for the message mi and will therefore invert y when it
generates its forgery.
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A remark on the random-oracle model. Having seen our first “random-oracle proof”, it
is worth remarking on the meaning of the proof. First, we stress that formally, such a theorem
says nothing about the security of the scheme when a concrete hash function is used. Thus, any
argument saying that security is implied, is heuristic. Nevertheless, the intuition here is that if the
hash function itself is not attacked, then an attack on RSA-FDH should yield an inversion algorithm
for RSA. Any attack on RSA-FDH that does not yield such an inversion algorithm should imply
some sort of attack on the “random properties” of the hash function that is used. As you can see,
such arguments employ a lot of handwaving and cannot be made rigorous. Nevertheless, they are
arguably better than nothing.

Partial domain hash. Notice that the proof of Theorem 12.2 relies heavily on the fact that the
range of h is the entire RSA domain (or at least, a polynomial fraction of it). Otherwise, the input
y that M receives may not be in the range of h, and so cannot be set to be the reply of the random
oracle. We note that in some standards, the hash-and-sign paradigm as in RSA-FDH is used, but
the output of the hash is much smaller than the size of the modulus (e.g., it could be the output of
SHA-1 which is only 160 bits). There is no proof of security for such schemes (even in the random
oracle); the best that is known is that for the case of e = 2 (i.e., the Rabin function), security in the
random-oracle model holds as long as the output of h is larger than 2/3 of the size of the modulus.

12.3 Certificates and Public-Key Infrastructure

One very important use of digital signatures is for generating certificates that are used in a public-
key infrastructure. Very briefly, the problem that we wish to solve here is that of distributing public
keys in a reliable way. That is, we have seen that just having the receiver send its public key to
the sender is dangerous because an adversary can carry out a man-in-the-middle attack. However,
if the public key could somehow be certified so that the sender would know that it is correct, this
would solve the problem.

Certificates. A digital certificate is a “document” containing a party’s identity, its public key
(for signatures or encryption), and other information (like an expiration date). Thus, my certificate
would contain my name “Yehuda Lindell”, my identity number (or social security number), and
my public key pk. This document is then signed by a certificate authority (CA) who is trusted to
verify the identity of a party before generating a certificate. (In reality, it is possible to download
certificates over the Internet. However, these have very low reliability; good certificates must be
paid for and require providing some proof of identity to the CA.)

Note that a certificate binds a person’s identity to a specified public-key. This is the property
that is needed for key distribution, and also for ensuring proper verification of digital signatures.

Public-key infrastructure. Obtaining a certificate does not help at all if the certificate au-
thority’s verification key is not known to the involved parties. In a public-key infrastructure, it
is assumed that the CA’s verification key is known. Therefore, upon receiving a certificate from
Alice, it is possible to first verify the name on the certificate (to sees that it indeed belongs to
Alice), and then check that the CA’s signature is correct. If yes, we can be confident that the key
received really belongs to Alice and thus it can be used for encrypting messages to send to Alice.
Likewise, if the key involved is a verification key, then we can be confident that a given signature
was actually generated by Alice and no one else.
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Of course, we have now just moved the problem to that of obtaining the CA’s public verification
key. However, since there are only a limited number of CA’s, this is a much smaller problem. In
practice, Window’s web browsers have CA verification keys hardwired into them (and buried deep
inside the operating system so that they cannot be modified). In order to see this in Explorer, go
to Tools → Internet Options → Content → Certificates → Trusted Root Certification Authorities. (It
is worthwhile looking at the certificates and the information in them.) Thus, assuming that we
trust the certificate authorities (or at least some of them), and that we trust Windows (for this
purpose, this is definitely reasonable), this solves the problem of key distribution. We note that
secure Internet connections use certificates, and they are automatically verified by your browser. In
order to see this, go to https://hb2.bankleumi.co.il/H/Login.html (this is the customer login
site of Israel’s Bank Leumi). Then, double-click on the small yellow padlock on the bottom-right
of your browser. The certificate information will appear.

Other issues. There are many other issues to be discussed on this topic. First, it is important
to note that, in general, a public-key infrastructure is actually a tree of trust. For example, a
company may obtain one certificate from a CA (for its IT manager) and then use that certificate
to generate certificates for all its employees. Verifying the validity of a certificate then requires
verifying the chain of certificates from the one received to a trusted “root certificate”. Another
issue that is important is that of revocation. Once a certificate has been issued, how is it possible
to revoke it in the case that the associated secret key has been leaked (or some other problem).
For this purpose there are “certificate revocation lists”; we will not discuss this more here. Finally,
we note that all of the above assumes that secret keys are never leaked. In practice, this means
that a party’s secret key should never be kept on his or her computer (because this would make it
vulnerable in the case that a virus successfully invades the machine). Therefore, smartcards should
be used: a smartcard is a small processor that resides in a tamper-proof environment. Keys should
be generated on the card and the secret key should never be exported. Rather, any decryption or
signing operation should take place on the card.

12.4 Combining Encryption and Signatures – SignCryption

We conclude our treatment of digital signatures with the analogous problem to that of “encrypt
and authenticate”. As with the private-key scenario, naive solutions fail. Indeed just encrypting-
then-authenticating (or the reverse) leads to many problems. For example, naive encrypt-then-sign
enables an attacker to take an encrypted message from someone else and resign it with its own
key. That is, let pki and ski be the respective public-encryption and secret-signing keys of Party
i. Then, receiving σ = Ssk1(Epk2(m)) should not at all convince Party 2 that Party 1 knows the
message m. Indeed, Party 1 could just have taken it from Party 3 who generated Ssk3(Epk2(m)).
We note that these problems can be overcome, for example, by including the identity of the sender
and receiver with the message. See [1] for just one paper on this topic.



Lecture 13

Secure Protocols

In this lecture we will study some secure protocols. In particular, we will describe the SSL authen-
tication and session-key generation protocol, and we will present Shamir’s secret-sharing protocol.
Our presentation here is very ad-hoc. We do not present formal definitions or proofs of security,
even though they are essential (as in all fields of cryptography).

13.1 The SSL Protocol Version 3.0

The SSL protocol is used in order to provide authentication and secure communication over the
Internet. It is used in almost all secure Internet transactions, and so is worthwhile studying. We
note that a newer version of SSL (called TLS) is also used very often. However, the parts of the
protocol that we will describe here are almost the same in both cases.

The SSL protocol is made up of two parts: (1) the handshake protocol which is used for au-
thentication, generating secret session keys, and agreeing on certain parameters, and (2) the record
layer, which is used for encrypting and authenticating communication (using the session keys that
were generated in the handshake protocol). We will focus exclusively on the handshake protocol
here.

The handshake protocol. In this protocol, the parties carry out a number of tasks. First, they
agree on the SSL protocol version and the cryptographic algorithms to be used. Furthermore, they
authenticate each other (optionally) and use public-key encryption (or Diffie-Hellman) in order
to generate secret session keys. We will assume the default scenario where the server is to be
authenticated to the client, but the client is not authenticated to the server.1 We will also only
consider the initial handshake protocol, and not the protocol used for resuming SSL sessions.

In the first step of the protocol, the parties exchange serverHello and clientHello messages.
These messages include the protocol version, a unique session identifier (chosen by the server), the
cryptographic algorithms to be used later (this is called the cipher suite), the compression method
to be used, and respective random values denoted serverHello.random and clientHello.random.
The client sends its hello message first, after which the server replies with its hello message and its
digital certificate for authentication.

* Lecture notes for an undergraduate course in cryptography. Yehuda Lindell, Bar-Ilan University, Israel, 2005.
1The authentication of the client to the server is often carried out on the application level, by having the client

send a password over an SSL connection.
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At this point, there are two possibilities, depending on the type of digital certificate owned by
the server:

1. The server’s digital certificate contains an RSA public encryption key (N, e): In this case, the
client chooses a random 48 byte pre-master secret Rpms and sends c = RSAN,e(Rpms) to the
server. PKCS encryption should be used here (and in particular OAEP that is secure against
chosen-ciphertext attacks).

2. The server’s digital certificate contains a public verification key for signatures: In this case,
the client and server run a key-exchange protocol. Here too there are two possibilities:

(a) RSA key exchange: The server chooses a temporary pair of RSA keys (pk, sk), signs
on the public-key pk with the signing key that is bound to its certificate, and sends
〈RSA, pk, σ〉 to the client, where σ is the signature on pk.
The client verifies the signature using the public verification-key from the certificate
(that is also verified by the client). If it is correct, the client chooses a random 48 byte
pre-master secret Rpms as above, and sends c = RSAN,e(Rpms) to the server.

(b) Diffie-Hellman key exchange: The server chooses a random (p, g, xs) as in the Diffie-
Hellman key exchange protocol, and sends the client the message 〈DH, (p, g, ys), σ〉 where
ys = gxsmod p and σ is a signature on (p, g, ys).
The client receives the tuple, verifies the signature, chooses a random xc and sends
yc = gxcmod p to the server.
Both parties set the pre-master secret to Rpms = gxsxcmod p.

At this stage of the protocol, the client and server both hold the same pre-master secret. They
both now use the pre-master secret in order to derive the master secret Rms. The master secret is
derived by applies a series of hashes to the pre-master secret and the clientHello.random and
serverHello.random messages. (This series of hashes is similar to the HMAC construction, but is
not exactly the same. Presumably, the assumption is that this serves as a pseudorandom function,
with the pre-master secret as the key.) Following this, the protocol is concluded by each sending
finish messages that are an HMAC of all the traffic of the handshake protocol, using the master
secret as the key. Specifically, the server sends HMACRms(ms, server) where ms is the series of all
the messages that the server sent and received in the handshake protocol (from the hello up until
but not including the finish messages). Likewise, the client sends HMACRms(mc, client).

These values are checked, and if they are correct the parties proceed to derive the session
keys from the master secret. Specifically, the master secret is hashed together with client and
server random messages, in the same way as above. (That is, the hashing is similar to the HMAC
construction. However, here the key to the pseudorandom function is the master secret, and not
the pre-master secret.) The result is then divided into a client MAC key, a server MAC key, a
client encryption key, a server encryption key, a client IV (for CBC encryption) and a server IV.
This concludes the description of the handshake protocol.

The security of SSL. Consider first the default case, where the server’s certificate contains an
RSA encryption key. In this case, the main point to observe is that the client receives the server’s
key (without modification), and encrypts the pre-master secret with that key. Since only the server
can decrypt this secret, this implies that no adversary (even one launching a man-in-the-middle
attack) can learn the pre-master secret. We note that the server has no idea who the client is; as
we have mentioned, such client authentication is optional in SSL but is typically dealt with at the
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level of the application if necessary, with passwords and the like. (Client authentication in SSL is
problematic because it requires the client to have a certificate.) Nevertheless, the important point
is that the client knows that it shares a secret with the correct server, and that no adversary knows
that secret. Thus, the client is guaranteed to have established a secure channel with the server.

One attack of importance is where the adversary causes two parties who both support SSL
version 3.0 to use version 2.0 (which has many problems). Likewise, the adversary may cause the
parties to use extremely weak 40 bit encryption, even though they support stronger encryption.
However, in order to do this, it must change at least one of the clientHello or serverHello
messages. Since the parties apply a MAC over the entire transcript of the handshake protocol,
this will be detected at the end. In general, it is good practice to apply a MAC over the entire
transcript in key exchange protocols.

Signing-only certificates. We note that this mode was mainly introduced to deal with the
problem of export regulations. If SSL is to be run in a country where only short encryption keys
are allowed, then it is far better to use a strong signing key as the long-term key in the certificate
(strong keys for signing are allowed), and then generate “short” keys for one-time use. Today this
issue is less problematic since export regulations have been significantly relaxed.

SSL weaknesses. We describe one security hole in SSL that was pointed out by [39]. Notice
that in the key-exchange mode, the server signs on the RSA key or Diffie-Hellman parameters.
However, the server does not sign on the tag that says which key exchange is to be used (i.e., RSA
or DH). This mistake can be utilized in the following attack.

Assume that a server chooses Diffie-Hellman key-exchange mode and sends 〈DH, (p, g, ys), σ〉 to
the client. A man-in-the-middle can modify this message to 〈RSA, (p, g, ys), σ〉 and then send it to
the client. Notice that the signature will still be correct (since the DH tag is not signed). Now, the
SSL specification does not require the client to check the length of the values, and as such it may
not detect any malicious behaviour. In such a case, the client is likely to interpret p as the RSA
modulus and g as the RSA exponent. It then sends the server the ciphertext c = (Rpms)g mod p.
The adversary receives c and can easily decrypt because g is known and p is a prime (in such a
field, extracting gth roots can be carried out efficiently). Furthermore, the adversary can just send
the server a Diffie-Hellman value y for which it knows x such that y = gx mod p. The final result
is that the adversary knows both the pre-master secret Rpms that is held by the client and the
pre-master secret gxsxmod p that is held by the server.

13.2 Secret Sharing

The problem that we wish to consider here is the following. Assume that there are n parties who
wish to share a secret s so that any subset of t or more parties can reconstruct the secret, yet
any subset of less than t parties learn nothing about the secret. In more detail, there exists one
party (the dealer) who holds a secret s. The dealer generates messages for each of the parties, and
privately sends each party its designated message. Following this preprocessing stage, the above
privacy and reconstruction properties must hold. A scheme that fulfills the above requirements is
called a (t, n)-threshold secret-sharing scheme.

This problem has many applications in the constructions of secure protocols. For example, one
may wish to construct a signature scheme so that only a subset of t parties can sign. These schemes
(and many others) use secret sharing as a basic building block.
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Shamir’s secret sharing protocol [33]. This scheme is based on the fact that for any for t
points on the two dimensional plane (x1, y1), . . . , (xt, yt) there exists a unique polynomial q(x) of
degree t − 1 such that for every i, q(xi) = yi. Furthermore, it is possible to find this polynomial
efficiently, using interpolation. We now describe the scheme itself:

1. Dealer instructions: Upon input s, choose a prime p such that p is greater than both s and
n. Then, choose a random polynomial q(·) of degree t− 1 in Zp[x], under the constraint that
q(0) = s. More specifically, choose coefficients a1, . . . , at−1 such that each ai is uniformly
distributed in {0, . . . , p− 1}. Then, let q(x) = s + a1x + a2x

2 + · · ·+ at−1x
t−1.

For each party Pi, send party Pi the pair (i, q(i)). (Note that here n different values are
needed. This is the reason that p must be greater than both s and n.)

2. Reconstruction: Given t values (ij , q(ij)), use polynomial interpolation in order to obtain the
polynomial q(·). Then, output s = q(0).

It is clear that the reconstruction procedure works. It remains to show that any subset of less than t
parties obtain no information about the secret s. In order to see this, assume that we are given t−1
shares; i.e., points (i1, q(i1)), . . . , (it−1, q(it−1). Then, for every possible choice of s ∈ {0, . . . , p−1},
there exists a unique polynomial of degree t that passes through the t − 1 given points and the
point (0, s). Since all polynomials are chosen with equal probability, this means that the value of
s is perfectly hidden.

Verifiable secret sharing (VSS). A significant problem with the above secret-sharing scheme
occurs in the case that some of the parties are malicious. Such parties can present false values (i.e.,
can lie about the value of the shares that they received), thereby causing the reconstructed value
to be false. Notice that the dealer may also behave maliciously. A verifiable secret sharing scheme
is one that prevents malicious behaviour by malicious participants.

We describe briefly the VSS scheme of Feldman [21]. The idea behind the scheme is to have
the dealer publish encryptions of the coefficients that enable the recipients to check the validity of
their shares. Specifically, in addition to sending the Shamir shares, the dealer chooses a random
prime p and generator g and broadcasts C0 = gs mod p and Ci = gai mod p, for i = 1, . . . , t − 1.
Now, upon receiving a share (j, yj), the party Pj checks that

gyj =
t∏

i=0

(Ci)ji
(13.1)

Notice that yj is supposed to equal q(j) = s +
∑t

i=1 ai · ji. Therefore, gyj is supposed to equal
gq(j) = gs · ∏t

i=1 gai·ji
. If the values do not match, the party broadcasts an “accusation”. The

dealer must then respond by broadcasting a new pair of points (j′, q(j′)) so that Eq. (13.1) holds.
For reconstruction, the new point j′ is used instead.

Note that if the dealer cheats, then it will receive accusations, which it must then answer
correctly. If it does not, all parties will know that it is cheating, because these values must be
broadcast. On the other hand, if malicious participants falsely publish accusations, they will be
able to obtain additional shares. This problem is solved by setting the threshold t to be greater
than 2n

3 , and assuming that the number of dishonest parties f is less than n
3 . Since each dishonest

party can publish at most one accusation, they cannot obtain 2n
3 shares, and so still cannot learn

the secret s.
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We note that this scheme reveals C0 = gs mod p which does contain some information about
s. Nevertheless, under the discrete log assumption (and assuming that s is a random secret), this
implies that some bits of s are fully hidden. (We will not elaborate on this point here.)
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